Appendix B

- B.1 SJVAPCD Air QualityMitigation Agreement
- B.2 Concurrence Letter
- B.3 Supplemental Air Quality Data (attached CD)

B.1 SJVAPCD Air QualityMitigation Agreement

AIR QUALITY MITIGATION AGREEMENT

This Air Quality Mitigation Agreement ("Agreement") is entered into on this <u>21st</u> day of <u>September</u>, 2006 by and between CASTLE & COOKE CALIFORNIA, INC., a California corporation ("Developer") and the SAN JOAQUIN VALLEY UNIFIED AIR POLLUTION CONTROL DISTRICT, an air pollution control district formed pursuant to California Health and Safety Code section 40150, et seq. ("District").

RECITALS

WHEREAS, Developer is presently seeking governmental approval of land use entitlements ("*Entitlements*") which will permit the development of its Gateway Village Project located in the County of Madera, California, as more particularly described on <u>Exhibit A</u> attached hereto (the "*Project*"); and

WHEREAS, the Project incorporates the design features specified on Exhibit B attached hereto ("Emission Reduction Design Features"), in order to significantly reduce the air quality impacts associated with the Project; and

WHEREAS, despite incorporation of the Emission Reduction Design Features, without mitigation, the Project would cause impacts on air quality within the geographical boundaries of the San Joaquin Valley Unified Air Pollution Control District, as depicted on Exhibit C attached hereto (the "District Boundaries"); and

WHEREAS, Developer anticipates that mitigation of impacts on air quality resulting from the Project will be either required as a condition to the approval of Developer's Entitlements, or voluntarily imposed by Developer as a means of reducing such impacts; and

WHEREAS, Developer desires to fully comply with all requirements of the California Environmental Quality Act codified at California Public Resources Code section 21000, et seq. ("CEQA"), including all requirements relating to the mitigation of air quality impacts arising from or in connection with the Project; and

WHEREAS, District is an air pollution control district formed by the counties of Fresno, Kern, Kings, Madera, Merced, San Joaquin, Stanislaus and Tulare, pursuant to California Health and Safety Code section 40150, et seq.; and

WHEREAS, District is responsible for developing and implementing air quality control measures within the District Boundaries, including air quality control measures for stationary sources, transportation sources, and indirect sources; and

WHEREAS, District has determined that with appropriate funding, District can bring about a reduction of emissions from certain projects in types and in sufficient quantities to fully mitigate the net air quality criteria pollutant impacts of the Project as quantified in the Verified Air Quality Assessment (as defined in Section 2.2 below) ("Project's Air Impact"); and

WHEREAS, Developer and District desire to enter into this Agreement in order to develop and implement air quality control measures which will fully mitigate the Project's Air Impact to the extent that the development of such Project will result in no net increase in criteria pollutant emissions over the criteria pollutant emissions which would otherwise exist without the development thereof.

AGREEMENT

NOW THEREFORE, in exchange of the mutual covenants herein contained, Developer and District hereby agree as follows:

1. Emission Reduction by Developer and District.

- 1.1. Emission Reduction Proposals. Developer shall identify and propose to District opportunities for the reduction of emissions to fully mitigate Project's Air Impact, including but not limited to opportunities for removal or retrofitting of stationary, transportation, indirect, and/or mobile pollution source equipment, and/or other opportunities therefor (each, an "Emission Reduction Proposal"). Each Emission Reduction Proposal shall be submitted in writing to the District, using District approved forms, and shall contain a representation by Developer that the owner/operator of the identified Pollution Source Equipment has expressed interest in entering into a written funding agreement with District in District's then standard form to District ("Funding Agreement") requiring the removal or replacement of the identified equipment with new equipment under District's "Heavy Duty Engine Emission Reduction Incentive Program", or another emission reduction program adopted by District ("District Emission Reduction Program").
- 1.2. **District's Verification of Emission Reduction.** As quickly as practicable upon Developer's submission to District of an Emission Reduction Proposal, District shall determine the types and quantities of permanent reduction in emissions which would be realized by the proposed removal or retrofit and shall advise Developer of such determination in writing ("Emission Reduction Verification") thereby verifying that in District's considered opinion the removal or retrofits proposed in the Emission Reduction Proposal would result in

permanent emission reduction in the locality of the Project in the types and quantities so determined by District.

- 1.3. **Emission Reduction Proposal Advance.** Developer shall advance to District, on the date of submittal of each Developer's Emission Reduction Proposal, a monetary sum equal to the total estimated cost (as specified in each Developer's Emission Reduction Proposal), until sufficient advance is received by the District to fully mitigate the Project's Air Impact ("*Emission Reduction Proposal Advance*").
- 1.4. Funding Agreements. As soon as practicable after District's receipt of Developer's Emission Reduction Proposal Advance, District shall use diligent efforts to enter into Funding Agreements with the owners and/or operators of the pollution source equipment identified in Developer's Emission Reduction Proposal, thereby providing for the removal and/or retrofit of all of such Pollution Source Equipment, and providing for District's payment (from the Emission Reduction Proposal Advance) to such owner or operator, of an amount equal to the estimated cost of such opportunity, as specified in Developer's Emission Reduction Proposals. District shall use diligent efforts to enter into Funding Agreements with all of the owners or operators identified in Developer's Emission Reduction Proposals within ninety (90) days following District's receipt of a complete Emission Reduction Proposal and the Emission Reduction Proposal Advance from the Developer.
- 1.5. Use of Emission Reduction Proposal Advance. District shall use the Emission Reduction Proposal Advance to meet its monetary obligations under the Funding Agreements that District shall enter into with the owners of the Pollution Source Equipment identified in Developer's Emission Reduction Proposals.
- Advance. In the event Developer is unable to submit to District Emission Reduction Proposals providing for emission reduction in the types and quantities necessary to fully mitigate the Project's Air Impact, or in the event District is unable to enter into Funding Agreements with any of the owners or operators identified in Developer's Emission Reduction Proposals, District shall notify Developer in writing of the additional emission reductions needed to fully mitigate the Project's Air Impact, and Developer shall have a reasonable time, not to exceed one hundred eighty (180) days within which to submit to District additional or supplemental Emission Reduction Proposals in order to provide the necessary additional emission reduction.
- 1.7. Unused Advance / Emission Reduction Shortfall / Additional Payment.

1.7.1. **Unused Advance.** If, despite District's diligent efforts to enter into Funding Agreements with all of the owners or operators identified in Developer's Emission Reduction Proposals (and, if applicable, supplemental Emission Reduction Proposals submitted by Developer), District is unable to enter into Funding Agreements sufficient to fully mitigate the Project's air impact, then District shall use any unused portion of Developer's Emission Reduction Proposal Advance to fund emission reduction opportunities to mitigate the balance of the Project's Air Impact at District's actual cost of doing so, provided that such actual costs shall not exceed the costs set forth in the following Emission Reduction Cost Schedule:

Emission Reduction Cost Schedule										
Year Paid	NOx or ROG (\$/ton)	PM10 (\$/ton)								
2006	\$32,500	\$29,070								
2007	\$49,700	\$55,940								
2008	\$65,450	\$90,110								
Beyond	Prevailing Costs	Prevailing Costs								

District is of the considered opinion that the emission reductions listed in the above schedule can be achieved at the corresponding times and costs shown in said schedule.

1.7.2. Emission Reduction Shortfall/Additional Payment. In the event the emission reduction brought about by the Funding Agreements entered into between District and the owners or operators identified in Developer's Emission Reduction Proposals (and, if applicable supplemental Emission Reduction Proposals), and that brought about pursuant to Section 1.7.1 above. are not sufficient to fully mitigate the Project's Air Impact (Emission Reduction Shortfall), then Developer shall be credited for the emission reduction brought about as a result of Funding Agreements entered into between the District and the owners or operators identified in Developer's Emission Reduction Proposals and for the emission reduction brought about pursuant to Section 1.7.1 above, and Developer thereafter shall deposit with District, within 30 days of receiving notice of the Emission Reduction Shortfall from the District, an additional amount equal to the product of (i) the District's cost per ton of emission reduction as shown in the Emission Reduction Cost Schedule set forth in Section 1.7.1 above, multiplied by (ii) the total number of tons of emission reduction necessary to fully mitigate the Project's Air Impact less the total number of tons of emission reduction so credited to Developer. In the event District's actual costs associated with mitigating the balance of the Project's Air Impact is less than the amounts deposited with the District for such purpose, then District shall promptly refund to Developer the unused portion of Developer's deposited funds. However, in no case shall the amount paid to the District be less than that amount that would be required for this Project according to Rule 9510, Indirect Source Review, under Section 7, "Off-site Emission Reduction Fee Calculations and Fee Schedules".

- 1.8. **Surplus Mitigation.** In addition to the amounts payable under paragraph 1.3, Developer shall deliver to District an additional sum equal to five percent (5%) of the Emission Reduction Proposal Advance. Said additional sum shall be paid under the same schedule as set forth in paragraph 1.3. District shall utilize such additional sum to fund further localized emission reduction opportunities in quantities consistent with the schedule set forth in paragraph 1.7.1.
- 1.9. **Time of Use.** The time of use of the emission reductions brought about by this Agreement shall be the date Developer receives final approval of the Project from all applicable Governmental Authorities.
- 1.10. **District's Obligation.** The monies paid by Developer under this Agreement shall be used by the District to obtain localized emission reductions in the types and quantities necessary to fully mitigate the Project's Air Impact as quantified in the Verified Air Quality Assessment. If necessary, District shall assist Developer in securing emission reductions, consistent with the provisions established in Section 1.7.2.
- CEQA Compliance/Full Mitigation. For and in exchange of Developer's payment of funds pursuant to Section 1 above, District shall ensure, by way of entering into, funding and enforcing the Funding Agreements in accordance with the provisions of Section 1.4 above and causing surplus mitigation in accordance with Section 1.8 above, that the Project's Air Impact is fully mitigated, such that the Project, combined with the emission reductions brought about in accordance with Section 1 above, shall result in no net increase in air quality impacts over those air quality impacts which would otherwise exist without the development of such Project. In addition, District shall ensure that surplus emission reductions are brought about in accordance with Section 1.8 above. The emission reductions required for full mitigation will be based on the average annual construction and the peak annual area source and mobile source emissions of NOx, ROG, and PM10 less the average annual emissions that have occurred at the project site during the three years prior to release of the Notice of Preparation. In addition to entering into, funding and enforcing the Funding Agreements in accordance with the provisions of Section 1.4 above and causing surplus mitigation in accordance with Section 1.8 above. District shall do all of the following:
- 2.1. **District's Verification of Air Assessment Protocol.** Following the execution of this Agreement, Developer shall submit to District an air assessment protocol prepared by Developer's air quality consultant reflecting the methodology, including air quality impact modeling, to be utilized in the preparation of the air quality assessment for the Project. Within twenty-one (21) days following District's receipt of Developer's complete air assessment protocol,

District shall review and comment upon such air assessment protocol, and, after Developer's incorporation of any and all revisions suggested by District, District shall verify in writing to Developer the correctness of the air assessment protocol which will be utilized in the preparation of the air quality assessment for the Project.

- District's Verification of Air Quality Assessment. Following District's Verification of Air Assessment Protocol, Developer shall submit to District an air quality assessment prepared by Developer's air quality consultant assessing the air quality impacts of the Project. District shall use its best efforts to review and comment upon Developer's air quality assessment within thirty (30) days following District's receipt of Developer's complete air quality assessment. and, after Developer's incorporation of any and all revisions suggested by District, District shall verify in writing to Developer the correctness of the air quality assessment to be utilized in connection with the CEQA documents for the Project, including (i) the methodology utilized in the preparation of the CEQA document, (ii) the types and quantities of any net air quality impacts associated with the Project, (iii) the appropriateness of the mitigation measures proposed in the CEQA document, and (iv) any other matters which may pertain to such CEQA document and/or any air quality impacts or air quality mitigation measures referenced therein (the "Verified Air Quality Assessment").
- Impact Report. Upon request by Developer, and submission by Developer to District of any administrative Draft Environmental Impact Report, or other applicable CEQA documents for the Project, District shall review, comment upon and, after incorporation of any and all revisions made by District, verify in writing to Developer the correctness of all portions thereof which pertain to air quality impacts, including, (i) the methodology utilized in the preparation of the CEQA document, (ii) the types and quantities of any net air quality impacts associated with the Project, (iii) the appropriateness of the mitigation measures proposed in the CEQA document, and (iv) any other matters which may pertain to such CEQA document and/or any air quality impacts or air quality mitigation measures referenced therein.
- 2.4. **District's Acknowledgment Regarding Full Mitigation.** At such time as District is provided an opportunity as a commenting agency to comment upon the Draft Environmental Impact Report and Final Environmental Impact Report for the Project, District shall comment in writing as to the correctness of all portions thereof which pertain to air quality impacts, including (i) the methodology utilized in the preparation of the CEQA document, (ii) the types and quantities of any net air quality impacts associated with the Project, (iii) the appropriateness of the mitigation measures proposed in the CEQA document, and (iv) any other matters which may pertain to such CEQA document and/or any air quality impacts or air quality mitigation measures referenced therein.

District shall at all times fully perform its duties and obligations as a commenting agency, and the provisions of this Section 2.4 shall not be interpreted to the contrary. At such time as the District has entered into Funding Agreements pursuant to Section 1.4 above and the owners/operators of equipment to be removed and/or replaced under such agreements have removed and replaced such equipment in accordance with the provisions thereof, District shall verify in writing to Developer and to the lead agency that full mitigation of the Project's Air Impact has been achieved, upon successful fulfillment of all Funding Agreements. District shall ensure that the owners/operators of equipment to be removed and/or replaced pursuant to such Funding Agreements perform all obligations to be performed on the part of such parties under said Funding Agreements.

- 2.5. District's Oversight of Air Quality Mitigation Monitoring Plan. Upon request of the lead agency having jurisdiction over the Project, District shall oversee that portion of the mitigation monitoring plan adopted by the lead agency for the Project which relates to the mitigation brought about by Section 1 of this Agreement. Alternatively, upon request of the lead agency having jurisdiction over the Project, District shall cooperate with the lead agency in the oversight of that portion of the mitigation monitoring plan adopted by the lead agency for the Project which relates to the mitigation brought about by Section 1 of this Agreement.
- 2.6. District's Documentation, Record Keeping and Monitoring. District shall document, keep adequate records on and monitor the emission reduction brought about as a result of this Agreement, and shall from time to time, upon written request by Developer or by the lead agency for the Project, provide to Developer or to the lead agency written reports verifying that emission reduction has been and/or is being brought about so as to fully mitigate the Project's Air Impact.
- 3. Subsequent Litigation, Legislation and/or Administrative Action / Credit to Developer.
- 3.1.1. **Subsequent Litigation.** In the event that despite this Agreement, Developer is required as a result of a final judgment or District Approved Settlement in any subsequent third party litigation, to pay monies in addition to the monies to be paid by Developer pursuant to Section 1 above, then, provided that the project total emissions are the same as quantified in the Verified Air Quality Assessment, District shall acknowledge and credit Developer with mitigation of the air quality impacts of the Project in such types and quantities that Developer can establish, to the reasonable satisfaction of District, will result from Developer's payment of such additional monies, and shall reduce any amounts thereafter payable by Developer under this Agreement by an amount equal to the additional monies so paid by Developer. This requirement

shall not apply if the additional monies are required to mitigate emissions that exceed those set forth in the Verified Air Quality Assessment. For purposes of this Section 3.1.1, a "District Approved Settlement" shall mean a settlement of a lawsuit filed pursuant to CEQA, the National Environmental Protection Act or other applicable environmental law which (i) provides for Developer's payment of monies in exchange for a dismissal of such lawsuit, (ii) provides for the use of such monies by the petitioner in such lawsuit in such a manner as to mitigate adverse air quality impacts of the Project, and (iii) is approved in writing by District.

- 3.1.2. **District Rule 9510.** The performance of Developer's and District's obligations under this Agreement will fully mitigate the Project's Air Impact. Inasmuch as the mitigation provided under this Agreement exceeds the mitigation which would otherwise have been provided under Sections 6.0 and 7.0 of District's Rule 9510, and the Project's mitigated baseline (being zero emissions) is less than the threshold stated in Section 4.3 of said Rule 9510, the Project is exempt from Sections 6.0 and 7.0 of District's Rule 9510. Accordingly, no off-site Emission Reduction Fee will be required in connection with the approval or development of the Project. For each individual project developed at the project site requiring a discretionary approval by the lead agency, Developer shall provide District with a map or diagram indicating its location within the area covered by this agreement.
- 4. **Term of Agreement.** This Agreement shall be effective upon the date first written above, and shall terminate upon District's meeting its obligation to implement projects that provide necessary emissions reductions to fully mitigate the Project's Air Impact (the "*Term*"). Developer may, at any time prior to the approval of the Project by all applicable Governmental Authorities, by written notice to District, terminate this Agreement, whereupon, (i) District shall acknowledge in writing to the lead agency that Developer has mitigated air quality impacts of the Project to the extent and in the types and quantities brought about by Funding Agreements theretofore funded by Developer's Emission Reduction Proposal Advance (and if applicable pursuant to Section 1.7.1 above), (ii) District shall refund to Developer any unused portion of Developer's Emission Reduction Proposal Advance less any unpaid administrative fees incurred; and (iii) neither Developer nor District shall have any further rights or obligations under this Agreement.
- 5. Payment of Administrative Fees to District. Developer agrees to pay to District, in order to reimburse District for its general overhead required for the administration of this Agreement, an administrative fee ("*ERIP Fee*") in an amount equal to four percent (4%) of the Emission Reduction Proposal Advance. Such ERIP Fee shall be due and payable upon Developer's delivery of the Emission Reduction Proposal Advance pursuant to Section 1.3 above. In addition to the ERIP Fee, Developer agrees to pay to District, within thirty (30)

days following Developer's receipt of District's invoice, administrative fees to reimburse District for staff time spent and materials used by District in the administration of this Agreement, including review, verification and preparation of documents, and staff time relating to the performance of District's obligations hereunder, based on a time and materials basis at District's average weighted labor rates.

6. Representations, Covenants and Warranties.

- 6.1. Developer's Representations, Covenants and Warranties. Developer represents, covenants and warrants to District, as of the date of this Agreement, and as of the date of Developer's submission to District of any documents contemplated hereunder, as follows:
- 6.1.1. The undersigned representatives of Developer are duly authorized to execute, deliver and perform this Agreement, and upon Developer's execution and delivery of this Agreement, this Agreement will have been duly authorized by Developer.
- 6.1.2. Upon execution and delivery of this Agreement by Developer, Developer's obligations under this Agreement shall be legal, valid and binding obligations of Developer, duly enforceable at law and in equity in accordance with the terms and conditions of this Agreement.
- 6.1.3. There is no lawsuit, legal action, arbitration, legal or administrative proceeding, legislative or quasi-legislative action or claim existing, pending, threatened or anticipated which would render all or any portion of this Agreement invalid, void or unenforceable in accordance with the terms and conditions thereof.
- 6.1.4. Other than the execution and delivery of this Agreement by the undersigned representatives of Developer, there are no approvals, consents, confirmations, proceedings, or other actions required by Developer or any third party, entity or agency in order to enter into and carry out the terms, conditions and intent of the parties with respect to this Agreement.
- 6.2. **District's Representations, Covenants and Warranties.** District represents, covenants and warrants to Developer, as of the date of this Agreement, and as of the date of District's delivery to Developer of any documents contemplated hereunder, as follows:
- 6.2.1. The undersigned representatives of District are duly authorized to execute, deliver and perform this Agreement, and upon District's

execution and delivery of this Agreement, this Agreement will have been duly authorized by District.

- 6.2.2. Upon execution and delivery of this Agreement by District, District's obligations under this Agreement shall be legal, valid and binding obligations of District, duly enforceable at law and in equity in accordance with the terms and conditions of this Agreement.
- 6.2.3. There is no lawsuit, legal action, arbitration, legal or administrative proceeding, legislative, quasi-legislative or administrative action or claim existing, pending, threatened or anticipated which would render all or any portion of this Agreement invalid, void or unenforceable in accordance with the terms and conditions thereof.
- 6.2.4. Other than the execution and delivery of this Agreement by the undersigned representatives of District, there are no approvals, consents, confirmations, proceedings, or other actions required by District or any third party, entity or agency in order to enter into and carry out the terms, conditions and intent of the parties with respect to this Agreement.
- 6.2.5. No lawsuit, legal action, arbitration, legal or administrative proceeding, legislative or quasi-legislative action or claim existing, pending, threatened or anticipated will render invalid, void or unenforceable any right or benefit Developer is to receive under the terms and conditions of this Agreement.
- 6.2.6. The monies paid by Developer under this Agreement shall be sufficient to ensure that the emission reduction contemplated by this Agreement shall occur, and District shall utilize such monies in such a manner as to ensure that such emission reduction shall occur.
- 6.2.7. Upon the approval of this Agreement by the governing board of District, the Air Pollution Control Officer of District, or equivalent representative, or a delegee of such officer, shall have the authority to approve, deliver, verify, enter into, acknowledge and/or accept any communication, notice, notification, verification, agreement and/or other document to be issued or entered into by District under the terms and conditions of this Agreement, without further approval of the governing board of District.
- 7. **Indemnification.** Developer agrees to indemnify, defend and hold harmless District for, from and in connection with any third party claims, losses and/or liabilities arising from or in connection with District's performance of this Agreement, excluding only such claims, losses and/or liabilities which result from or in connection with District's sole negligence, act or omission.

- 8. **Inurement.** Developer's rights and obligations under this Agreement, or applicable portions thereof, shall run with the land encompassed by the Project, and shall inure to the benefit of and be binding upon the heirs, successors and assigns of Developer who take title to such lands or applicable portions thereof. Upon Developer's conveyance of all or any portion of the lands encompassed by Project, the rights and obligations of Developer under this Agreement shall, to the extent applicable to the lands so conveyed, be transferred to the transferee thereof, and Developer shall thereupon be released by District from, all obligations and liabilities so assigned, except for such obligations and liabilities arising prior to such transfer.
- Assignment. Developer shall have the right to assign all or any part 9. of its rights and/or obligations under this Agreement. Upon any such assignment. Developer shall deliver to District a written assignment and assumption agreement specifying the fact and extent of the assignment, the name and address of the assignee, and the assignee's assumption of all obligations of Developer thereby assigned. Developer shall have the right to assign all or any part of its rights and/or obligations under this Agreement to a third party for use in connection with the mitigation of air quality impacts resulting from one or more projects other than the Project, so long as (i) the project is located within the District Boundaries, (ii) the air quality impacts of such project(s) will in fact be mitigated, as verified by District, by the emission reductions brought about by this Agreement, and (iii) the project(s) consist of residential, commercial, industrial and/or mixed use real estate projects which incorporate the Emission Reduction Design Features. Upon any such assignment by Developer, District shall enter into an amendment of this Agreement which acknowledges the assignment and conforms the various provisions of this Agreement as may be required to be conformed in order to provide to the assignee the rights and benefits of this Agreement as if such assignee and its project were the original party and project contemplated in this Agreement.
- 10. **Recitals Incorporated.** The recitals set forth hereinabove are hereby incorporated into this Agreement and acknowledged, agreed to and adopted by the parties to this Agreement.
- 11. **Further Assurances.** Developer and District agree to execute and deliver any documents and/or perform any acts which are reasonably necessary in order to carry out the intent of the parties with respect to this Agreement.
- 12. **No Joint Venture or Partnership**. District and Developer agree that nothing contained in this Agreement or in any document executed in connection with this Agreement shall be construed as making District and Developer joint ventures or partners.

13. **Notices**. Any notices or communications relating to this Agreement shall be given in writing and shall be deemed sufficiently given and served for all purposes when delivered, if (a) in person, (b) by facsimile (with the original delivered by other means set forth in this Section 13), (c) by generally recognized overnight courier or (d) by United States Mail, certified or registered mail, return receipt requested, postage prepaid, to the respective addresses set forth below, or to such other addresses as the parties may designate from time to time by providing written notice of the change to the other party.

To Developer: Castle & Cooke California, Inc 10000 Stockdale Highway Bakersfield, CA 93311

Fax: (661) 664-6030

Attn: Bruce Freeman

with a copy to:
Castle & Cooke
California, Inc
10000 Stockdale Highway
Bakersfield, CA 93311
Fax: (661) 664-6042
Attn: William D. Sampson

with a copy to: Jones & Beardsley, P.C. 10000 Stockdale Highway, Suite 350

Bakersfield, CA 93311 Fax: (661) 664-2904 Attn: Mark A. Jones, Esq. To District:

San Joaquin Valley Unified APCD 1990 E. Gettysburg Avenue

Fresno, CA 93726

Fax: (559)

Attn: Seyed Sadredin

Executive Director/APCO

with a copy to:

San Joaquin Valley Unified APCD 1990 E. Gettysburg Avenue

Fresno, CA 93726

Fax: (559)

Attn: Dave Warner

Director of Permit Services

with a copy to:

San Joaquin Valley Unified APCD

1990 E. Gettysburg Avenue

Fresno, CA 93726

Fax: (559)

Attn: Philip M. Jay
District Counsel

- 14. **Entire Agreement**. The terms of this Agreement, together with all attached exhibits, are intended by the parties as the complete and final expression of their agreement with respect to such terms and exhibits and may not be contradicted by evidence of any prior or contemporaneous agreement. This Agreement specifically supersedes any prior written or oral agreements between the parties with respect to the subject matter of this Agreement.
- 15. Amendments and Waivers. No addition to or modification of this Agreement shall be effective unless set forth in writing and signed by the party against whom the addition or modification is sought to be enforced. The party benefited by any condition or obligation may waive the same, but such waiver

shall not be enforceable by another party unless made in writing and signed by the waiving party.

- 16. **Invalidity of Provisions**. If any provision of this Agreement as applied to either party or to any circumstance shall be adjudged by a court of competent jurisdiction to be void or unenforceable for any reason, the same shall in no way affect (to the maximum extent permissible by law) any other provision of this Agreement, the application of any such provision under circumstances different from those adjudicated by the court, or the validity or enforceability of this Agreement as a whole. The parties further agree to replace any such invalid, illegal or unenforceable portion with a valid and enforceable provision which will achieve, to the maximum extent legally possible, the economic, business or other purposes of the invalid, illegal or unenforceable portion.
- 17. **Construction**. Unless otherwise indicated, all Section references are to the sections of this Agreement and all references to days are to calendar days. Whenever, under the terms of this Agreement the time for performance of a covenant or condition falls upon a Saturday, Sunday or California state holiday, the time for performance shall be extended to the next business day. The headings used in this Agreement are provided for convenience only and this Agreement shall be interpreted without reference to any headings. Wherever required by the context, the singular shall include the plural and vice versa, and the masculine gender shall include the feminine or neuter genders, or vice versa. This Agreement may be executed in one or more counterparts, each of which shall be deemed an original, but all of which together shall constitute one and the same instrument. The language in all parts of this Agreement shall be construed as a whole in accordance with its fair meaning, and shall not be construed against any party solely by virtue of the fact that such party or its counsel was primarily responsible for its preparation.
- 18. **Governing Law**. This Agreement shall be governed by the laws of the State of California applicable to contracts made and to be performed in California.
- 19. **No Third-party Beneficiaries**. Nothing in this Agreement, express or implied, is intended to confer any rights or remedies under or by reason of this Agreement on any person other than the parties to it and their respective permitted successors and assigns, nor is anything in this Agreement intended to relieve or discharge any obligation of any third person to any party hereto or give any third person any right of subrogation or action over or against any party to this Agreement.
- 20. **Exhibits**. The exhibits attached to this Agreement shall be deemed to be a part of this Agreement and are fully incorporated herein by reference.

21. **Force Majeure.** The time within which any party shall be required to perform under this Agreement shall be extended on a day-per-day basis for each day during which such performance is prevented or delayed by reason of events reasonably outside of the control of the performing party, including, without limitation, acts of God, events of destruction, acts of war, civil insurrection, strikes, shortages, governmental delays, moratoria, civil litigation and the like, and/or delays caused by the non-performing party's act or omission.

IN WITNESS WHEREOF, Developer and District have executed this Agreement and agree that it shall be effective as of the date first written above.

> **DEVELOPER: CASTLE & COOKE** CALIFORNIA, INC., a California corporation

Bv:

Title:

Title: Sc. Vice

DISTRICT: SAN JOAQUIN VALLEY UNIFIED AIR POLLUTION CONTROL DISTRICT, an air pollution control district formed pursuant to California Health and Safety Code section 40150, et seq.

DISTRICT

San Joaquin Valley Unified Air Pollution Control District

Councilmember Mike Maggard, Chair

Governing Board

Recommended for approval:

San Joaquin Valley Unified Air Pollution

Control District

Seyed Sadredin

Executive Director/APCO

Approved as to legal form:

San Joaquin Valley Unified Air

Pollution Control District

Philip M. Jay

District Counsel

Approved as to accounting form:

San Joaquin Valley Unified Air Pollution Control District

For accounting use only:

Program:_____

Account No.:_____

Roger W. McCoy Director of Administrative Service

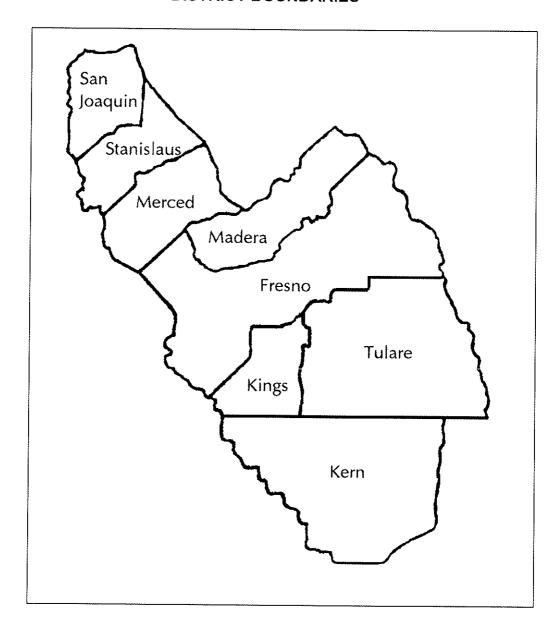
EXHIBIT A

DESCRIPTION OF THE PROJECT

That project generally known as the Gateway Village Project, including development applications for a General Plan Amendment, zone change, specific plan, infrastructure master plan, development agreement and related entitlements permitting the development and use of a master planned community on a 2,062 acre site of unincorporated land in the County of Madera, including 6,578 residential units, 784,080 square feet of commercial uses (including officer, service, retail, light industrial and government uses),825,898 square feet of town center commercial and mixed use (including office, service and retail), schools, parks and other uses, all as more particularly set forth in the specific plan for the project currently being processed with the County of Madera, California.

EXHIBIT B

EMISSION REDUCTION DESIGN FEATURES


The project shall incorporate the following Emission Reduction Design Features:

- The project will incorporate the following on-site features:
 - Utilization of land use designs which create walkable communities and encourage pedestrian travel.
 - Utilization of interconnecting sidewalks, walking paths and/or bike paths in order to encourage travel by means other than by motor vehicle.
 - Utilization of appropriate landscaping to create reasonable shade canopies for streets, parkways and parking areas.
 - Utilization of roadway designs which enhance pedestrian safety by appropriate signaling, signage and separation from traffic.
 - Design requirements which incorporate natural gas hookups and electrical outlets on patios.
 - Design requirements which prohibit the installation and use of wood burning stoves and wood burning fireplaces.
- Prior to issuance of grading permits for the Project, the Developer shall prepare and submit to District dust control plans for the areas to be graded, in accordance with District Regulation VIII. The plan shall be prepared consistent with District Regulation VIII and must be reviewed and approved by the District prior to the commencement of grading activities. Each contractor working on the Project site shall implement the dust control measures outlined in the approved dust control plan. The dust control measures selected shall be incorporated as a note on each grading plan.
- District maintains New Source Review requirements that direct owners/operators of certain types of stationary equipment to obtain an Authority to Construct ("ATC") and Permits to Operate ("PTO") from the District. As part of this process, the need for emission control equipment is assessed and the District determines whether a Health Risk Assessment ("HRA") must be prepared. Owners/operators of all stationary sources for which such approvals are required should show

proof of compliance with District Rules and Regulations prior to issuance of certificates of occupancy.

EXHIBIT C

DISTRICT BOUNDARIES

B.2 Concurrence Letter

February 22, 2007

Rayburn Beach Madera County Planning Department 2037 W. Cleveland Ave, MS-G Madera, CA 93637

Project: Gateway Village Area Plan

Subject: District comments to the responses provided by WZI regarding the

changes made to the Draft EIR for Gateway Village - Madera

Dear Mr. Beach:

The San Joaquin Valley Unified Air Pollution Control District (District) has reviewed the revised Air Quality Analysis (AQA) and responses from WZI, Inc. to District comments made on January 24, 2007.

The District agrees with the proposed changes made to the EIR as discussed with WZI, Inc. and confirms that through the Development Mitigation Contract (DMC) between the District and the project proponent, the project emissions will be fully mitigated.

The District recognizes and greatly appreciates the project proponent's efforts to reduce the project's impact on air quality by voluntarily entering into a DMC with the District.

Sincerely,

David Warner

Director of Permits Services

Annaud Marjollet

Rermit Services Manager

DW:jrw

CC:

File

WZI, Inc.

Seved Sadredin

Executive Director/Air Pollution Control Officer

Northern Region
4800 Enterprise Way

Modesto, CA 95356-8718 Tel: (209) 557-6400 FAX: (209) 557-6475 Central Region (Main Office)

1990 E. Gettysburg Avenue Fresno, CA 93726-0244

Tel: (559) 230-6000 FAX: (559) 230-6061 .

Southern Region

2700 M Street, Suite 275 Bakersfield, CA 93301-2373 Tel: (661) 326-6900 FAX: (661) 326-6985

B.3 Supplemental Air Quality Data (attached CD)

Supplemental Data Submitted to San Joaquin Air Pollution Control District

Gateway Village Specific Plan EIR

Various Dates

ATTACHMENT 1

Total Project Criteria Emissions at Buildout (2025) With School and Consumer Product Emission Factor Revisions

Project Component	ROG (tons/yr)	NO _X (tons/yr)	CO (tons/yr)	PM* ₁₀ (tons/yr)	SO _X (tons/yr)
Area Source Emissions	67.18	12.24	22.99	0.08	0.11
Stationary Source Emissions**	18.92	10.00		0.61	
Indirect Source Emissions	53.38	52.15	521.00	93.83	1.19
Existing Agricultural Emissions	-44.77	-0.92	-0.89	-24.66	-0.01
Subtotal	94.71	73.47	543.10	69.86	1.29
NSR¹ Offsets	-23.81	-14.00		-0.61	
Subtotal	70.90	59.47	543.10	69.25	1.29
Total Project Emissions with Proposed Mitigation	0.00	0.00	543.10	0.00	1.29
District Significance Threshold (GAMAQI)	10	10	N/A	15	N/A

^{*}Includes PM 2.5 and sulfate fractions
**Stationary source emissions for Criteria Pollutants and HAPS are subject to New Source Review

	ROG+NOX PM10		17.79	50,53	95.29	122.92	152.41	181.96	214.00	226.76	244.75	268.70	300.02	308.85	311.42	316.18	325.08	312.67	312.14	309.29	298.40			254.73
		SOX	0.00	0.04	0.10	0.20	0.29	0.38	0.47	0.57	0.65	0.74	0.81	0.91	1.01	1.08	1.13	1.23	1.27	1.29	1.30	-0.01		
	TOTAL	PM10	1.72	5.93	12.09	18.22	24.64	31.90	39.17	45.28	51.07	58.38	65.02	71.08	76.36	80.49	84,79	89.22	92.18	94.34	94.52	-24.66		60.13
	PROJECT TOTAL	8	13.68	83.03	181.29	291.02	380.90	463.32	523.77	559.87	569.12	620.49	651.57	673.41	681.72	671.75	665.45	653.55	626.12	592.20	543.99	-0.89		
		XON	10.10	26.00	45.98	54.46	64.77	73.73	85.79	85.77	89.20	94.16	105.79	102.22	96.25	90.56	90.12	77.25	74.63	71.28	64.39	-0.92		89.20
		ROG	5.97	18.59	37.22	50.24	63.00	76.33	89.03	95.71	104.48	116.16	129.21	135.55	138.81	145.13	150.17	146.20	145.33	143.67	139.49	-44.77		105.40
																								NOI
	IARY	PM10						0.2	0.5	0.2	0.5	0.2	0.2	0.4	0.4	0.4	0.4	0.4	0.61	0.61	0.61	AG		MITIGATION
	STATIONARY	ROG						0.15	0.15	0.15	1.97	2.97	3.97	5.12	6.12	11.96	14.77	15.77	16.93	17,93	18.93			
		SOX	00.00	0.04	0.10	0.20	0.29	0.38	0.47	0.57	0.65	0.74	0.81	0.91	1.01	1.08	1.13	1.23	1.27	1.29	1.30			
Š	SNC	PM10	0.00	2.60	6.98	13.91	20.33	27.39	33.78	40.77	46.16	53.66	58.65	65.70	72.32	77.30	81.62	88.43	91.18	93.34	93.91			
MITIGAT	OPERATIONS	8	0.00	56.45	140.55	256.70	346.58	429.00	482.39	525,55	531.55	584.42	602.36	633.69	652.71	649.48	643.37	650.44	623.01	589,09	543.99			
GATEWAY MITIGATION	Ū	XON	0.00	6.36	15.88	29.10	39.41	48.37	55.22	60.41	61.44	67.51	69.43	72.87	74.81	74.10	73.81	74.95	72.33	68.98	64.39			
U		ROG	0.00	6.99	19.44	35.26	48.02	61.20	70.82	80.58	86.11	97.44	103.76	113.09	120.03	123.45	125.76	129.07	127.04	124.38	120.56			
		SOX	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	00.0	0.00	0.00	0.00	0.00	0.00				
	NOILO	PM10	1.72	3.33	5.11	4.31	4.31	4.31	5.19	4.31	4.71	4.52	6.17	4.98	3.64	2.79	2.77	0.39	0.39	0.39				
	CONSTRUCTION	8	13.68	26.58	40.74	34.32	34.32	34.32	41.38	34.32	37.57	36.07	49.21	39.72	29.01	22.27	22.08	3.11	3.11	3.11				
	O	XON	10.10	19.64	30,10	25.36	25.36	25.36	30.57	25.36	27.76	26.65	36.36	29.35	21.44	16.46	16.31	2.30	2.30	2.30				
		ROG	5.97	11.60	17.78	14.98	14.98	14.98	18.06	14.98	16.40	15.75	21.48	17.34	12.66	9.72	9.64	1.36	1.36	1.36				
													•											
	YEAR		2007	2008	2009	2010	2011	2012	2013	2014	2015	2016	2017	2018	2019	2020	2021	2022	2023	2024	2025			

NOX 966.0% 0.035% 0.128%	174,689 48,107	478.6 131.8																																			
ROG 1231.9% 0.061% 0.271%	140,708 31,719	385.5 86.9																																			
1-Mile San Joaquin Valley Air Basin Kern County	Tons / Year San Joaquin Valley Air Basin Kern County	Tons / Day San Joaquin Valley Air Basin Kern County																																			
502 0.01 0.01	0.02 0.03 0.04	0.06 0.06 0.07	0.09	0.11	0.11	000	0.00	č	0.03	0.09	0.26	0,43	0,52	0.68	0.74	0.92	0.98 1.03	1.12	1.16	1.19	8 8	8 8		205	9.04	0.20	0.29	0.47	0.57	0.74	0.91	1.01	1.13	1.23	129	1.30	0.00
		0.03 0.05 0.05																				6 6 6 6 6		PM10	2.60	13.91	27.33	33.78	46.16	53.66	56.05 65.70	72.32	81.62	88.43	93.34	93.91	0.00
ATES CO 0.81 2.43	4.06 5.67 7.35 8.96	10.60 12.24 14.17 15.73	17.63 19.49 20.82	22.77	22.99	98	0.00	STIMATES	55.64	138.12	340.91	473.43	514.95	570.25	586.63 616.06	633.22	628.66 621.61	627.67	600.11 566.10	521.00	9 9 9 9	0.0	Total	ខ	56.45	256.70	346.58 429.00	482.39	525.55 531.55	584.42	633.69	652.71	643.37	650.44	589.09	543.99	0.00
MISSION ESTIM NOx 0.32 1.00	1.94 2.78 3.72 4.55	5.48 6.30 7.46 8.25	10.26 10.93 11.37	11.97	12.24 12.24	000	0.00	LE) EMISSION E	8.0¢	14.88 27.16	36.63	50.67	54.93	60.05	61.18 63.56	64.55	63.17 62.44	62.98	60.20 56.74	52.15	8 8	0.00		NOX	6.36	29.10	39.41	55.22	60.41	67.51	72.87	74.81	73.81	74.95	68.98	64.39	00'0
AREA SOURCE EMISSION ESTIMATES ROC NOX 202 0.03 5.99 1.00 2.43	11.53 16.23 20.99 25.69	31.33 36.03 41.00 45.78	57.25 57.48 61.24 63.94	66.88	67.07 67.18 0.00	000	0.00 739.28	OPERATIONAL (VEHIC	4.97	13.45	31.79	45.13	49.25	56.44	57.98	62.55	62.21 61.82	62.42	60.16 57.31	53.38	0.00	0.00		ROG	6.99	35.26	48.02 61.20	70.82	80.58	97.44	113.09	120.03	125.76	129.07	124.38	120.56	0.00
2008									2008																												
2008	2010 2011 2012 2013	2014 2015 2016 2017	2019 2020 2021	2022	2024 2025 0	010	0 Total		2008	2010	2011	2013	2014	2016	2017 2018	2019	20 2 0 2021	2022	2023 2024	2025	.	100			2008	2010	2012	2013	2014	2016	2018	2019	2021	2022	2024	2025 n	. 0

2008 2008 2008 2019 2019 2010 2010 2011 2010 2011 2011	ROG 13.45 ROG 23.73 ROG 34.22 22.07 31.79 ROG 46.83 30.28 40.21 ROG 57.32 37.00 45.13 ROG 44.36	NOX 6,04 6,04 6,04 6,04 6,04 6,04 6,04 6,04	CO 55.84 CO 138.12 CO 222.84 (20.20 23.19 23.19 23.19 24.19 25.19	SO2	PM10 2.60 2.60 PM10 6.97 6.97 PM10 13.90 PM10 20.32 20.25 20.31 PM10 27.41 27.31 27.37 PM10 33.82 33.71	2008 ROG NOX CO SOZ PM10
2008 2019 2009 2009 2010 2016 2017 2010 2010 2011 2011 2011 2012 2011 2012 2013 2010 2015 2015 2016 2015 2016 2017 2016 2017 2016 2017	A.97 ROG 13.45 ROG 23.73 ROG 33.72 23.73 ROG 34.22 2.07 31.79 ROG 46.83 30.28 40.21 ROG 68.79 45.13 ROG 68.79 ROG 68.79 ROG 69.79 ROG 69	14.88 14.88 14.88 14.88 16.80 27.16 27.16 17.16 18.80	55.64 CO 138.12 138.12 138.12 138.12 CO 252.64 252.64 CO 369.09 28.19 340.91 CO 497.65 307.65 421.65 CO 614.11 379.64 473.43 CO 741.42	0.03 SO2 0.09 0.09 0.18 0.18 SO2 0.26 0.26 0.26 0.35 0.35 0.35 0.35 0.35	2,60 PM10 6,97 6,97 13,90 13,90 PM10 20,32 20,25 20,31 PM10 27,41 27,31 27,37 PM10 33,82 33,71	2018 ROG NOX CO SO2 PM10 2011 ROG NOX CO SO2 PM10 2010 ROG NOX CO SO2 PM10 2010 ROG NOX CO SO2 PM10 2010 ROG NOX CO SO2 PM10 2011 ROG NOX CO SO2 PM10 2010 ROG NOX CO SO2 PM10
2009 2009 2010 2011 2010 2011 2011 2011	ROG 13.45 ROG 23.73 ROG 46.83 80.22 ROG 45.13 ROG 46.83 ROG 46.83 ROG 66.79 ROG 68.79 ROG 68.79 ROG 68.79 ROG 68.79 ROG 68.79 ROG 68.79 ROG 69.79 ROG 59.08	NOX 14.88 NOX 27.16 NOX 27.16 NOX 39.74 24.20 36.63 NOX 44.65 NOX 66.20 67.00 NOX 79.93 48.68 54.93	CO 138.12 CO 252.64 252.64 252.64 273.65 CO 614.11 379.64 473.43 CO 741.42	SO2 0.09 0.18 0.18 0.18 SO2 0.26 0.26 0.26 0.35 0.35 0.35 0.35 0.35	PM10 6.97 6.97 13.90 13.90 PM10 20.32 20.25 20.31 PM10 27.41 27.31 27.37 PM10 33.82 33.71	2009 ROG NOX CO SOZ PM10 2009 5.99 1.00 2.43 0.01 0.01 2016 ROG NOX CO SOZ PM10 2010 ROG NOX CO SOZ PM10 2010 11.53 1.94 4.06 0.02 0 2011 ROG NOX CO SOZ PM10 2011 ROG SOZ PM10 2015 16.23 2.78 5.67 0.03 0 2015 16.23 2.78 5.67 0.03 0 2016 NOX CO SOZ PM10 2010 ROG SOZ PM10
2010 2010 2010 2010 2010 2010 2011 2011	13.45 ROG 23.73 ROG 23.73 ROG 34.22 22.07 31.79 ROG 45.13 30.28 40.21 ROG 65.73 37.00 45.13 ROG 64.76 64.76 65.76 67.70	14.88 NOx 27.16 27.16 NOx 39.74 24.20 36.63 NOx 52.65 32.66 44.65 NOx 65.20 40.32 50.67 NOx 79.93 48.68 54.93	138.12 CO 252.64 252.64 252.64 252.64 CO 369.09 228.19 340.91 CO 497.65 307.65 421.65 CO 614.11 379.64 473.43 CO 741.42	0.09 SO2 0.18 0.18 SO2 0.26 0.26 0.26 0.35 0.35 0.35 SO2 0.43 0.43 0.43	6.97 6.97 13.90 13.90 13.90 PM10 20.32 20.25 20.31 PM10 27.41 27.31 27.37 PM10 33.82 33.71	2019
2015 2019 2010 2010 2010 2010 2010 2011 2011	13.45 ROG 23.73 23.73 ROG 44.22 ROG 46.83 30.28 40.21 ROG 47.93 ROG 47.93 ROG 47.93 ROG 87.94 ROG 87.96 ROG 87.96 ROG 59.08	14.88 NOx 27.16 27.16 NOx 39.74 24.20 36.63 NOx 52.65 32.65 32.66 44.65 NOx 66.20 40.32 50.67 NOx 79.93 48.68 54.93	CO 252.64 CO 369.09 228.19 340.91 CO 497.65 307.65 421.65 CO 614.11 379.64 473.43 CO 741.42	0.09 SO2 0.18 0.18 SO2 0.26 0.26 0.35 0.35 0.35 SO2 0.43 0.43 0.43	PM10 13.90 13.90 13.90 20.32 20.25 20.31 PM10 27.41 27.31 27.37 PM10 33.82 33.71	2016 ROS NOX CO SO2 PM10
2010 2010 2010 2015 2016 2015 2016 2015 2016 2016 2016 2016 2016 2016 2016 2016	ROG 23,73 ROG 34,22 22,07 ROG 46,83 30,28 40,21 ROG 46,83 37,00 45,13 ROG 46,83 37,00 45,13 ROG 46,83 37,00 45,13 ROG 56,79 44,36 49,25 ROG 50,08	NOx 27.16 27.16 27.16 NOx 39.74 24.20 36.63 NOx 52.65 32.66 44.65 NOx 66.20 40.32 50.67 NOx 79.93 48.68 54.93	CO 252.64 252.64 CO 369.09 228.19 340.91 CO 497.65 307.85 421.65 CO 614.11 379.84 473.43	SO2 0.18 0.18 SO2 0.26 0.26 0.26 0.35 0.35 0.35 0.35 SO2 0.43 0.43	PM10 13.90 13.90 PM10 20.32 20.25 20.31 PM10 27.41 27.31 27.37 PM10 33.82 33.71	2010 ROG NOx CO SO2 PM10
2010 2011 2011 2011 2011 2012 2012 2012	23.73 ROG 34.22 22.07 ROG 46.83 30.28 40.21 ROG 57.32 37.00 45.13 ROG 68.79 44.36 49.25 ROG 50.08	27.16 27.16 NOx 39.74 24.20 36.63 NOx 52.65 32.66 44.65 NOx 66.20 40.32 50.67 NOx 79.93 48.68	252.64 252.64 CO 369.09 228.19 340.91 CO 497.65 307.65 421.65 CO 614.11 379.64 473.43 CO 741.42	0.18 0.18 SO2 0.26 0.26 0.35 0.35 0.35 0.35 SO2 0.43 0.43	13.90 13.90 PM10 20.32 20.25 20.31 PM10 27.41 27.31 27.37 PM10 33.82 33.71	2010 11.53 1.94 4.06 0.02 0 2011 ROG NOx CO SOZ PM10 2010 16.22 2.78 5.67 6.03 0 2015 ROG NOX CO SOZ PM10 2010 10.22 2.78 5.67 6.03 0 2012 ROG NOX CO SOZ PM10 2012 ROG NOX CO SOZ PM10 2012 ROG NOX CO SOZ PM10
2015 2011 2011 2011 2012 2012 2013 2010 2013 2010 2015 2015 2016 2015 2016 2016 2017 2017 2017 2016 2016 2017	ROG 46.83 30.28 40.21 ROG 46.83 30.28 40.21 ROG 57.32 37.00 44.36 49.25 ROG 50.08	27.16 NOx 39.74 24.20 36.63 NOx 52.65 32.66 44.65 NOx 65.20 40.32 50.67 NOx 79.93 48.68 54.93	252.64 CO 369.09 228.19 340.91 CO 497.65 307.65 421.65 CO 614.11 379.64 473.43 CO 741.42	0.18 SO2 0.26 0.26 0.26 0.35 0.35 0.35 0.35 SO2 0.43 0.43	PM10 20.32 20.25 20.31 PM10 27.41 27.37 PM10 33.82 33.71	2015 ROG NOX CO SOZ PM10 2016 19.23 2.78 5.67 0.03 C 2015 19.23 2.78 5.67 0.03 C 2016 19.23 2.78 5.67 0.03 C 2017 2018
2011 2010 2016 2016 2016 2016 2016 2016	ROG 34.22 22.07 31.79 ROG 46.83 30.28 40.21 ROG 57.32 37.00 45.13 ROG 68.79 44.36 49.25	NOx 39.74 24.20 36.63 NOx 52.65 32.66 44.65 NOx 66.20 40.32 50.67 NOx 79.93 48.68 54.93	CO 369.09 228.19 340.91 CO 497.65 307.65 CO 614.11 379.64 473.43 CO 741.42	SO2 0.26 0.26 0.26 0.35 0.35 0.35 0.35	PM10 20.32 20.25 20.31 PM10 27.41 27.31 27.37 PM10 33.82 33.71	2010 16.23 2.78 5.67 0.03 0 2015 16.23 2.78 5.67 0.03 0 2015 2015 2.78 2.78 5.67 0.03 0 2016 2016 2018 2.78 2.78 2.78 2.78 2.78 2.78 2.78 2.7
2011 2010 2016 2016 2016 2016 2016 2016	ROG 34.22 22.07 31.79 ROG 46.83 30.28 40.21 ROG 57.32 37.00 45.13 ROG 68.79 44.36 49.25	39,74 24,20 36,63 NOX 52,65 32,66 44,65 NOX 66,20 40,32 50,67 NOX 79,93 48,68 54,93	369.09 228.19 340.91 CO 497.65 307.65 421.65 CO 614.11 379.64 473.43	0.26 0.26 0.26 SO2 0.35 0.35 0.35 0.35	20.32 20.25 20.31 PM10 27.41 27.31 27.37 PM10 33.82 33.71	2010 16.23 2.78 5.67 0.03 0 2015 16.23 2.78 5.67 0.03 0 2015 2015 2.78 2.78 5.67 0.03 0 2016 2016 2018 2.78 2.78 2.78 2.78 2.78 2.78 2.78 2.7
2015 2012 2012 2013 2013 2010 2013 2014 2014 2016 2015 2016 2016 2016 2017 2017 2017	22.07 31.79 ROG 46.83 30.28 40.21 ROG 57.32 37.00 45.13 ROG 68.79 44.36 49.25 ROG 50.08	24.20 36.63 NOx 52.65 32.66 44.65 NOx 66.20 40.32 50.67 NOx 79.93 48.68	228.19 340.91 GO	0.26 0.26 SO2 0.35 0.35 0.35 0.43 0.43 0.43	20.25 20.31 PM10 27.41 27.31 27.37 PM10 33.82 33.71	2015 15,22 2.78 5.67 0.03 C
2012 2010 2015 2016 2016 2016 2016 2017 2016 2017	ROG 46.83 30.28 40.21 ROG 57.32 37.00 45.13 ROG 68.79 44.36 49.25 ROG 50.08	NOx 52.65 32.66 44.65 NOx 66.20 40.32 50.67 NOx 79.93 48.68 54.93	CO 497.65 307.65 421.65 CO 614.11 379.64 473.43	0.35 0.35 0.35 0.35 502 0.43 0.43	PM10 27.41 27.31 27.37 PM10 33.82 33.71	2012 ROG NOx CO SO2 PM10 2010 20.99 3.72 7.35 0.03 0
2010 2015 2013 2010 2015 2014 2016 2015 2016 2015 2016 2016 2016 2017	46.83 30.28 40.21 ROG 57.32 37.00 45.13 ROG 68.79 44.36 49.25	32.66 44.65 NOx 66.20 40.32 50.67 NOx 79.93 48.68	307.65 421.65 CO 614.11 379.64 473.43 CO 741.42	0.35 0.35 0.35 SO2 0.43 0.43	27.41 27.31 27.37 PM10 33.82 33.71	2010 20.99 3.72 7.35 0.03 0
2015 2013 2010 2015 2016 2014 2010 2015 2015 2016 2016 2016 2016 2017	30.28 40.21 ROG 57.32 37.00 45.13 ROG 68.79 44.36 49.25 ROG 50.08	32.66 44.65 NOx 66.20 40.32 50.67 NOx 79.93 48.68	307.65 421.65 CO 614.11 379.64 473.43 CO 741.42	0,35 0,35 SO2 0,43 0,43	27.31 27.37 PM10 33.82 33.71	
2013 2010 2015 2016 2015 2016 2016 2016 2016 2016 2016 2016 2016	ROG 57.32 37.00 45.13 ROG 68.79 44.36 49.25 ROG 50.08	NCx 66.20 40.32 50.67 NCx 79.93 48.68 54.93	614.11 379.64 473.43 CO 741,42	0.43 0.43 0.43	PM10 33.82 33.71	
2010 2011 2014 2014 2019 2015 2016 2016 2016 2016 2016 2016 2016 2017	57.32 37.00 45.13 ROG 68.79 44.36 49.25 ROG 50.08	66.20 40.32 50.67 NOx 79.93 48.68 54.93	614.11 379.64 473.43 CO 741,42	0.43 0.43 0.43	33.82 33.71	
2015 2016 2016 2017 2018 2018 2019 2019 2019 2019 2019 2019 2019 2019	37.00 45.13 ROG 68.79 44.36 49.25 ROG 50.08	40.32 50.67 NOx 79.93 48.68 54.93	379.64 473.43 CO 741,42	0.43	33.71	2013 ROG NOx CO SO2 PM10
2014 2010 2015 2015 2016 2016 2017	ROG 68.79 44.36 49.25 ROG 50.08	NOx 79,93 48.68 54.93	CO 741,42			2010 25.69 4.55 8.96 0.04 0 2015 25.69 4.55 8.96 0.04 0
2010 2015 2015 2016 2016 2016 2016 2017 2017	68.79 44.36 49.25 ROG 50.08	79,93 48.68 54.93		SO2	33.75	27.92 22.00 (4.79) (0.94)
2015 2015 2016 2016 2016 2017	44.36 49.25 ROG 50.08	48.68 54.93			PM10	2014 ROG NOx CO SQ2 PM10
2015 2010 2015 2016 2016 2016 2020 2020 2020 2020 2020 20217	ROG 50.08			0.52 0.52	40.84 40.71	2010 31.33 5.48 10.60 0.05 0 2015 31.33 5.48 10.60 0.05 0
2010 2015 2016 2016 2020 2020 2020 2017	50.08		514,95	0.52	40,74	234 (53-2) (53-2) (737)
2010 2015 2016 2016 2020 2020 2020 2017	50.08	NOx	co	SOZ	PM 10	2015 ROG NOx CO SO2 PM10
2016 2015 2020 2017 2017	50.08	55,14	519,31	0,59	45,12	2010 2015 36,03 5,30 12,24 0,06 0
2015 2020 2017		55,14	519,31	0.59	46.12	
2015 2020 2017	ROG	NOx			PM10	2016 ROG NOX CO SO2 PM10
2017	59.57 43.90	64.10 43,87	603.64 436.70	0.68 0,68	53.63 53.52	2015 41.00 7.46 14.17 0.06 0 2020 41.00 7.46 14.17 0.06 0
	56,44	60,05	570,25	0.68	53.61	
		NOx	со	S02	PM10	2017 ROG NOX CO SO2 PM10
2015 2020	64.80 47.75	70.02 47.92	659.58 477,21	0.74 0.74	58.65 58.52	2015 45.78 8.25 15.73 0.07 0 2020 45.78 8.25 15.73 0.07 0
2017	57.98	61.18	588,63	0.74	58.60	AND GOVERNMENT OF THE
2018		NOx	со	SO2	PM10	2018 ROG NOx CO \$02 PM10
2015 2020	72.25 53.23	78.41 53.66	738.57 534,39	0.83 0.83	65.73 65.58	2015 52.25 9.31 17.63 0.08 0 2020 52.25 9.31 17.63 0.08 0
2018	60.84	63.56	616,06	0,83	65.64	284 322 283 485 8
2019	ROG	NOx	co		PM10	2019 ROG NOx CO SO2 PM10
2015 2020	79.26 58.37	86.35 59.10	813.02 588.27	0.92 0.92	72.40 72.23	2015 57.48 10.26 19.49 0.09 0 2020 57.48 10.26 19.49 0.09 0
2019	62.55	64.55	633.22	0.92	72.26	2018 52.06 10.26 11.49 12.00
2020 2020	ROG 62.21	NOx 63.17	CO 628.66	SO2 0.98	PM10 77.23	2020 ROG NOX CO SO2 PM10 2020 61.24 10.93 20.82 0.10 0
2025	62.21	63.17	628.66	0.98	77.23	2025 61.24 10.93 20.82 0.10 0
2020	62.21	63.17	628.66	0.98	77.23	5120 5124 5029 5570 p. 5% p. 1
2021	ROG 65.56	NOx 66.73	CO 663.85	SO2 1.03	PM10 81.58	2021 ROG NOX CO SO2 PM10 2020 63.96 11.46 21.80 0.10 0
2025	46.84	45.27	452.65	1.03	81.43	2025 63.88 10.99 21.62 0.10 0
2021	61.82	62.44	621.61	1.03	81.55	A 100 (100 (100 (100 (100 (100 (100 (100
2022	ROG 70.46	NOx 72.28	CO 719.19	SO2 1.12	PM10 88.41	2022 ROG NOX CO SO2 PM10 2020 66.65 11.97 22.77 0.11 0
2025	50.34	49.03	490,38	1.12	88.25	2025 66.65 11.97 22.77 0.11 0
10.000 1000 Sec. 2022	62.42	62.98	627.67	1.12	88.35	\$7.50 A.50 B.50 \$2.52 B.50 \$4.50 B.50 B.50 \$2.52 B.50 B.50 B.50 B.50 B.50 B.50 B.50 B.50
2023	ROG 72.61	NOx 74.59	741.70	SO2 1.16	PM10 91.20	2023 ROG NOX CO SO2 PM10 2020 66.88 12.13 22.90 0.11 0
2025	51.86	50.60	505.71	1.16	91,04	2025 66.88 12.13 22.90 0.11 0
2023	60.16	60.20	600.11	1.16	91.10	2000 CONTRACTOR CONTRA
2024 2020	ROG	NOx 76.40	CO 759.40	SO2 1.18	PM10 93.40	2024 ROG NOX CO SO2 PM10 2020 67.07 12.24 22.99 0.11 0
2025	53,06	51.83	517.78	1.18	93.23	2025 67.07 12.24 22.99 0.11 0
2024	57.31	56.74	566.10	1.18	93.26	
2025	ROG 53.38	NOx 52.15	CO	SO2 1,19	PM10 93.83	2025 ROG NOx CO SO2 PM10 2025 67.18 12.24 22.99 0.11 0
2030	53,38	52,15	521.00	1.19	93.83	2030 67.18 12.24 22.99 0.11 0
2025	53.38	52,15	521.00	1.19	93.83	
2025	ROG	NOx	co	SO2	PM 10	0 ROG NOX CO SO2 PM10
2030						2030
2026	0.00	0.00	0.00	0,00	0,00	
2025	ROG	NOx	co	SO2	PM10	0 ROG NOx CO SO2 PM10
2025						2025
2027	0.00	0.00	0.00	0.00	0.00	202 200 200 200 200 200 200 200 200 200
2025	ROG	NOx	со	SO2	PM10	0 ROG NOx CO SO2 PM10
2025						2025
2027	0.00	0.00	0.00	0.00	0.00	2027 0.00 0.00 0.00 0.00 0
	ROG	NOx	co	SO2_	PM10	0 ROG NOx CO SO2 PM10
na		ł		I	ļ	2025
2025 2030		ļ	1 [

Page: 1 02/14/2007 9:39 AM

URBEMIS 2002 For Windows 8.7.0

File Name:

H:\ClientData\Castle and Cooke\Gateway Project Madera\GATEWAY AIR STUDY 8-17-06 (distrib Gateway Village Operations Non-Residential Template

2.60

0.04

Project Name: Project Location:

TOTALS (tpy, unmitigated)
TOTALS (tpy, mitigated)

6.36

56.45

On-Road Motor Vehicle Emissions Based on EMFAC2002 version 2.2

SUMMARY REPORT

(Tons/Year)

AREA SOURCE EMISSION ESTIMATE		270	a 0	000	DM1 0
	ROG	NOx	CO	SO2	PM10
TOTALS (tpy, unmitigated)	2.02	0.32	0.81	0.01	0.00
TOTALS (tpy, mitigated)	2.02	0.32	0.81	0.01	0.00
PERATIONAL (VEHICLE) EMISSIO	N ESTIMATE	s			
	ROG	NOx	CO	SO2	PM10
TOTALS (tpy, unmitigated)	5.46	6.69	61.59	0.04	2.88
TOTALS (tpy, mitigated)	4.97	6.04	55.64	0.03	2.60
GUM OF AREA AND OPERATIONAL E	MISSION ES	TIMATES			
, oi oi in an	ROG	NOx	CO	SO2	PM10
mama = 0 (1					
TOTALS (tpy, unmitigated)	7.48	7.01	62.40	0.04	2.88

6.98

Page: 2 02/14/2007 9:39 AM

URBEMIS 2002 For Windows 8.7.0

File Name: H:\ClientData\Castle and Cooke\Gateway Project Madera\GATEWAY AIR STUDY 8-17-06 (distrib Project Name: Gateway Village Operations Project Location: Non-Residential Template On-Road Motor Vehicle Emissions Based on EMFAC2002 version 2.2

DETAIL REPORT (Tons/Year)

AREA SOURCE EMISSION ESTIMATES Source Natural Gas Hearth Landscaping Consumer Prdcts Architectural Coatings TOTALS (tpy, unmitigated)	(Tons per ROG 0.02 0.00 0.09 1.58 0.32 2.02	Year, NOx 0.31 0.00 0.00	Unmitigated) CO 0.15 0.00 0.66 - 0.81	SO2 0.00 0.00 0.01	PM10 0.00 0.00 0.00
AREA SOURCE EMISSION ESTIMATES Source Natural Gas Hearth Landscaping Consumer Prdcts Architectural Coatings TOTALS (tpy, mitigated)	(Tons per ROG 0.02 0.00 0.09 1.58 0.32 2.02	Year, NOx 0.31 0.00 0.00	Mitigated) CO 0.15 0.00 0.66	SO2 0 0.00 0.01 - - 0.01	PM10 0.00 0.00 0.00

Area Source Mitigation Measures

Page: 3 02/14/2007 9:39 AM

UNMITIGATED OPERATIONAL EMISSIONS

	ROG	NOx	CO	SO2	PM10
Single family housing	3.22	4.03	37.33	0.02	1.76
Government office building	2.25	2.66	24.26	0.01	1.11
_					
TOTAL EMISSIONS (tons/yr)	5.46	6.69	61.59	0.04	2.88

Includes correction for passby trips. Does not include double counting adjustment for internal trips.

OPERATIONAL (Vehicle) EMISSION ESTIMATES

Analysis Year: 2008 Season: Annual

EMFAC Version: EMFAC2002 (9/2002)

Summary of Land Uses:

Unit Type	Acreage	Trip Rate	No. Units	Total Trips
Single family housing Government office building	66.67	9.57 trips/dwelling unit 68.93 trips/1000 sq. ft.	200.00 1 26.14 1	

Sum of Total Trips 3,715.83
Total Vehicle Miles Traveled 20,756.74

Vehicle Assumptions:

Fleet Mix:

Vehicle Type	Percent Type	Non-Catalyst	Catalyst	Diesel
Light Auto	55.00	1.60	98.00	0.40
Light Truck < 3,750 lbs	s 15.00	2.70	95.30	2.00
Light Truck 3,751- 5,750	16.20	1.20	97.50	1.30
Med Truck 5,751-8,500	7.20	1.40	95.80	2.80
Lite-Heavy 8,501-10,000	1.10	0.00	81.80	18.20
Lite-Heavy 10,001-14,000	0.40	0.00	50.00	50.00
Med-Heavy 14,001-33,000	1.00	0.00	20.00	80.00
Heavy-Heavy 33,001-60,000	0.90	0.00	11.10	88.90
Line Haul > 60,000 lbs	0.00	0.00	0.00	100.00
Urban Bus	0.20	0.00	50.00	50.00
Motorcycle	1.70	76.50	23.50	0.00
School Bus	0.10	0.00	0.00	100.00
Motor Home	1.20	8.30	83.30	8.40

Travel Conditions

	Residential			Commercial				
	Home-	Home-	Home-					
	Work	Shop	Other	Commute	Non-Work	Customer		
Urban Trip Length (miles)	10.8	2.0	7.5	9.5	7.4	7.4		
Rural Trip Length (miles)	16.8	7.1	7.9	14.7	6.6	6.6		
Trip Speeds (mph)	35.0	35.0	35.0	35.0	35.0	35.0		
% of Trips - Residential	32.9	18.0	49.1					
% of Trips - Commercial (hy land	1150)						
Government office building		usej		10.0	5.0	85.0		

Page: 4 02/14/2007 9:39 AM

MITIGATED OPERATIONAL EMISSIONS

ROG NOx CO S02 PM10 Single family housing 3.64 33.72 2.94 0.02 1.59 Government office building 21.92 2.03 2.41 0.01 1.01 TOTAL EMISSIONS (tons/yr) 4.97 6.04 55.64 0.03 2.60 PERCENTAGE REDUCTION 9 10 10 10 10

Includes correction for passby trips.

Does not include double counting adjustment for internal trips.

OPERATIONAL (Vehicle) EMISSION ESTIMATES

Analysis Year: 2008 Season: Annual

EMFAC Version: EMFAC2002 (9/2002)

Summary of Land Uses:

Unit Type Acreage Trip Rate No. Total Units Trips

Single family housing 66.67 9.57 trips/dwelling unit 200.00 1,914.00 Government office building 68.93 trips/1000 sq. ft. 26.14 1,801.83

Sum of Total Trips 3,715.83
Total Vehicle Miles Traveled 20,756.74

Vehicle Assumptions:

Fleet Mix:

Vehicle Type	Percent Type	Non-Catalyst	Catalyst	Diesel
Light Auto	55.00	1.60	98.00	0.40
Light Truck < 3,750 lb	s 15.00	2.70	95.30	2.00
Light Truck 3,751- 5,75	0 16.20	1.20	97.50	1.30
Med Truck 5,751-8,50	0 7.20	1.40	95.80	2.80
Lite-Heavy 8,501-10,00	0 1.10	0.00	81.80	18.20
Lite-Heavy 10,001-14,00	0 0.40	0.00	50.00	50.00
Med-Heavy 14,001-33,00	0 1.00	0.00	20.00	80.00
Heavy-Heavy 33,001-60,00	0 0.90	0.00	11.10	88.90
Line Haul > 60,000 lb	s 0.00	0.00	0.00	100.00
Urban Bus	0.20	0.00	50.00	50.00
Motorcycle	1.70	76.50	23.50	0.00
School Bus	0.10	0.00	0.00	100.00
Motor Home	1.20	8.30	83.30	8.40

Travel Conditions

	Residential			Commercial		
	Home-	Home-	Home-			
	Work	Shop	Other	Commute	Non-Work	Customer
Urban Trip Length (miles)	10.8	2.0	7.5	9.5	7.4	7.4
Rural Trip Length (miles)	16.8	7.1	7.9	14.7	6.6	6.6
Trip Speeds (mph)	35.0	35.0	35.0	35.0	35.0	35.0
<pre>% of Trips - Residential</pre>	32.9	18.0	49.1			

% of Trips - Commercial (by land use)
Government office building 10.0 5.0 85.0

Page: 5 02/14/2007 9:39 AM

MITIGATION OPTIONS SELECTED

Residential Mitigation Measures

Residential Mix of Uses Mitigation

Percent Reduction in Trips is 7.67% (calculated as a % of 9.57 trips/day)
Note that the above percent is applied to a baseline of 9.57 and that product is subtracted from the Unmitigated Trips
Inputs Selected:

The employment for the study area (within a 1/2 mile radius of the project) is 7894.

The number of housing units within a 1/2 mile radius of the project, plus the number of residential units included in the project are 6578.

Residential Local-Serving Retail Mitigation

Percent Reduction in Trips is 2% (calculated as a % of 9.57 trips/day)
Note that the above percent is applied to a baseline of 9.57 and that product is subtracted from the Unmitigated Trips
Inputs Selected:

The Presence of Local-Serving Retail checkbox was selected.

Non-Residential Mitigation Measures

Non-Residential Mix of Uses Mitigation

Percent Reduction in Trips is 7.67%

Inputs Selected:

The number of housing units within a 1/2 mile radius of the project, plus the number of residential units included in the project are 6578. The employment for the study area (within a 1/2 mile radius of the project) is 7894.

Non-Residential Local-Serving Retail Mitigation

Percent Reduction in Trips is 2%

Inputs Selected:

The Presence of Local-Serving Retail checkbox was selected.

```
Page: 6
02/14/2007 9:39 AM

Changes made to the default values for Land Use Trip Percentages

Changes made to the default values for Area

The area souce mitigation measure option switch changed from off to on.
```

The natural gas single family usage rate changed from 6665.0 to 4094.1. The natural gas multi-family usage rate changed from 4011.5 to 2288.9. The wood stove percentage changed from 67 to 0.

The natural gas fireplace percentage changed from 33 to 100. The landscape year changed from 2006 to 2008.

The consumer product ROG pounds per person changed from 0.0171 to 0.0151.

Changes made to the default values for Operations

The mitigation option switch changed from off to on.

The operational emission year changed from 2006 to 2008.

The home based work selection item changed from 8 to 7.

The home based shopping selection item changed from 8 to 7.

The home based shopping urban trip length changed from 7.3 to 2.

The home based other selection item changed from 8 to 7.

The commercial based commute selection item changed from 8 to 7.

The commercial based non-work selection item changed from 8 to 7.

The commercial based customer selection item changed from 8 to 7.

The Res and Non-Res Mix of Uses Mitigation changed from off to on.

The Res and Non-Res Local-Serving Retail Mitigation changed from off to on.

Page: 1 02/14/2007 9:40 AM

URBEMIS 2002 For Windows 8.7.0

H:\ClientData\Castle and Cooke\Gateway Project Madera\GATEWAY AIR STUDY 8-17-06 (distrib Gateway Village Operations Non-Residential Template File Name:

Project Name: Project Location:

On-Road Motor Vehicle Emissions Based on EMFAC2002 version 2.2

SUMMARY REPORT (Tons/Year)

	-	,				
REA SOURCE	EMISSION ESTIMAT	ES				
		ROG	NOx	CO	SO2	PM10
TOTALS (tpy	, unmitigated)	5.99	1.00	2.43	0.01	0.01
		5.99	1.00	2.43	0.01	0.01
PERATIONAL	(VEHICLE) EMISSI					
		ROG	NOx	CO	S02	PM10
TOTALS (tpy	, unmitigated)	14.74	16.57	153.80	0.10	7.76
TOTALS (tpy	, mitigated)	13.45	14.88	138.12	0.09	6.97
UM OF AREA	AND OPERATIONAL	EMISSION ES	STIMATES			
		ROG	NOx	CO	S02	PM10
TOTALS (tpy	, unmitigated)	20.73	17.58	156.24	0.11	7.77
TOTALS (tpy	, mitigated)	19.45	15.89	140.55	0.10	6.97
	TOTALS (tpy TOTALS (tpy PERATIONAL TOTALS (tpy TOTALS (tpy TOTALS (tpy TOTALS (tpy	TOTALS (tpy, unmitigated) TOTALS (tpy, mitigated) PERATIONAL (VEHICLE) EMISSI TOTALS (tpy, unmitigated) TOTALS (tpy, mitigated)	TOTALS (tpy, unmitigated) 5.99 TOTALS (tpy, mitigated) 5.99 PERATIONAL (VEHICLE) EMISSION ESTIMATE ROG TOTALS (tpy, unmitigated) 14.74 TOTALS (tpy, mitigated) 13.45 UM OF AREA AND OPERATIONAL EMISSION ESTIMATE ROG TOTALS (tpy, mitigated) 20.73	TOTALS (tpy, unmitigated) 5.99 1.00 TOTALS (tpy, mitigated) 5.99 1.00 PERATIONAL (VEHICLE) EMISSION ESTIMATES ROG NOX TOTALS (tpy, unmitigated) 14.74 16.57 TOTALS (tpy, mitigated) 13.45 14.88 FUM OF AREA AND OPERATIONAL EMISSION ESTIMATES ROG NOX TOTALS (tpy, unmitigated) 20.73 17.58	ROG NOx CO	ROG NOx CO SO2

Page: 2 02/14/2007 9:40 AM

URBEMIS 2002 For Windows 8.7.0

File Name: H:\ClientData\Castle and Cooke\Gateway Project Madera\GATEWAY AIR STUDY 8-17-06 (distrib Project Name: Gateway Village Operations Project Location: Non-Residential Template On-Road Motor Vehicle Emissions Based on EMFAC2002 version 2.2

DETAIL REPORT (Tons/Year)

AREA SOURCE EMISSION ESTIMATES	(Tons per	Year,	Unmitigated)		
Source	ROG	NOx	co	SO2	PM10
Natural Gas	0.08	1.00	0.49	0.00	0.00
Hearth	0.00	0.00	0.00	0.00	0.00
Landscaping	0.26	0.01	1.94	0.01	0.01
Consumer Prdcts	4.67	-	-	-	-
Architectural Coatings	0.99	-	-	-	-
TOTALS (tpy, unmitigated)	5.99	1.00	2.43	0.01	0.01
AREA SOURCE EMISSION ESTIMATES	(Tons per	Year,	Mitigated)		
Source	ROG	NOx	CO	SO2	PM10
Natural Gas	0.08	1.00	0.49	0	0.00
Hearth	0.00	0.00	0.00	0.00	0.00
Landscaping	0.26	0.01	1.94	0.01	0.01
Consumer Prdcts	4.67	-	-	-	-
Architectural Coatings	0.99	-	-	-	-
TOTALS (tpy, mitigated)	5.99	1.00	2.43	0.01	0.01

Area Source Mitigation Measures

UNMITIGATED OPERATIONAL EMISSIONS

	ROG	NOx	CO	S02	PM10
Single family housing	7.61	9.47	88.52	0.06	4.51
Retirement community	0.53	0.57	5.36	0.00	0.27
Elementary school	2.40	1.59	14.60	0.01	0.74
City park	0.05	0.04	0.35	0.00	0.02
Goverment office building	4.15	4.90	44.97	0.03	2.22
TOTAL EMISSIONS (tons/yr)	14.74	16.57	153.80	0.10	7.76

Includes correction for passby trips. Does not include double counting adjustment for internal trips.

OPERATIONAL (Vehicle) EMISSION ESTIMATES

Analysis Year: 2009 Season: Annual

EMFAC Version: EMFAC2002 (9/2002)

Summary of Land Uses:

Unit Type Acr	eage Trip	Rate	No. Units	Total Trips
5 1 5 -	6.00 3.71 1.29 1.59	trips/dwelling trips/dwelling trips/students trips/acres trips/1000 sq.	unit 80.00 800.00 14.80	4,899.84 296.80 1,032.00 23.53 3,602.97

Sum of Total Trips 9,855.14
Total Vehicle Miles Traveled 56,077.03

Vehicle Assumptions:

Fleet Mix:

Vehicle Type	Percent Type	Non-Catalyst	Catalyst	Diesel
Light Auto	54.90	1.30	98.40	0.30
Light Truck < 3,750 lb	s 15.10	2.60	95.40	2.00
Light Truck 3,751- 5,75	0 16.10	1.20	98.10	0.70
Med Truck 5,751- 8,50	0 7.30	1.40	95.90	2.70
Lite-Heavy 8,501-10,00	0 1.10	0.00	81.80	18.20
Lite-Heavy 10,001-14,00	0 0.30	0.00	66.70	33.30
Med-Heavy 14,001-33,00	0 1.00	0.00	20.00	80.00
Heavy-Heavy 33,001-60,00	0 0.90	0.00	11.10	88.90
Line Haul > 60,000 lb	s 0.00	0.00	0.00	100.00
Urban Bus	0.20	0.00	50.00	50.00
Motorcycle	1.60	75.00	25.00	0.00
School Bus	0.10	0.00	0.00	100.00
Motor Home	1.40	7.10	85.70	7.20

		Residential		Commercial		
Urban Trip Length (miles)		Home- Shop 2.0	Home- Other 7.5	Commute 9.5	Non-Work C	7.4
Rural Trip Length (miles) Trip Speeds (mph) % of Trips - Residential	35.0	7.1 35.0 18.0	7.9 35.0 49.1	14.7 35.0	6.6 35.0	6.6 35.0
% of Trips - Commercial (Elementary school City park Government office building	•	. use)		20.0 5.0 10.0	10.0 2.5 5.0	70.0 92.5 85.0

MITIGATED OPERATIONAL EMISSIONS

	ROG	NOx	CO	SO2	PM10
Single family housing	6.95	8.55	79.97	0.05	4.07
Retirement community	0.43	0.43	4.03	0.00	0.20
Elementary school	2.27	1.44	13.19	0.01	0.67
City park	0.05	0.04	0.32	0.00	0.02
Goverment office building	3.76	4.43	40.62	0.03	2.01
TOTAL EMISSIONS (tons/yr)	13.45	14.88	138.12	0.09	6.97
PERCENTAGE REDUCTION %	9	10	10	10	10

Includes correction for passby trips.

Does not include double counting adjustment for internal trips.

OPERATIONAL (Vehicle) EMISSION ESTIMATES

Analysis Year: 2009 Season: Annual

EMFAC Version: EMFAC2002 (9/2002)

Summary of Land Uses:

Unit Type	Acreage	Trip Rate	No. Total Units Trips
Single family housing Retirement community Elementary school City park Goverment office building	170.67 16.00	9.57 trips/dwelling unit 3.71 trips/dwelling unit 1.29 trips/students 1.59 trips/acres 68.93 trips/1000 sq. ft.	

Sum of Total Trips 9,855.14 Total Vehicle Miles Traveled 56,077.03

Vehicle Assumptions:

Fleet Mix:

Vehicle Type	Percent Type	Non-Catalyst	Catalyst	Diesel
Light Auto	54.90	1.30	98.40	0.30
Light Truck < 3,750 lbs	s 15.10	2.60	95.40	2.00
Light Truck 3,751- 5,75	0 16.10	1.20	98.10	0.70
Med Truck 5,751-8,50	0 7.30	1.40	95.90	2.70
Lite-Heavy 8,501-10,00	0 1.10	0.00	81.80	18.20
Lite-Heavy 10,001-14,00	0.30	0.00	66.70	33.30
Med-Heavy 14,001-33,00	0 1.00	0.00	20.00	80.00
Heavy-Heavy 33,001-60,00	0.90	0.00	11.10	88.90
Line Haul > 60,000 lb	s 0.00	0.00	0.00	100.00
Urban Bus	0.20	0.00	50.00	50.00
Motorcycle	1.60	75.00	25.00	0.00
School Bus	0.10	0.00	0.00	100.00
Motor Home	1.40	7.10	85.70	7.20

TIAVET CONGICIONS						
		Residential			Commercial	L
	Home-	Home-	Home-			
	Work	Shop	Other	Commute	Non-Work	Customer
Urban Trip Length (miles)	10.8	2.0	7.5	9.5	7.4	7.4
Rural Trip Length (miles)	16.8	7.1	7.9	14.7	6.6	6.6
Trip Speeds (mph)	35.0	35.0	35.0	35.0	35.0	35.0
% of Trips - Residential	32.9	18.0	49.1			
% of Trips - Commercial (by land	l use)				
Elementary school				20.0	10.0	70.0
City park				5.0	2.5	92.5
Government office building				10.0	5.0	85.0

Page: 5 02/14/2007 9:40 AM

MITIGATION OPTIONS SELECTED

Residential Mitigation Measures

Residential Mix of Uses Mitigation

Percent Reduction in Trips is 7.67% (calculated as a % of 9.57 trips/day)
Note that the above percent is applied to a baseline of 9.57 and that product is subtracted from the Unmitigated Trips
Inputs Selected:

The number of housing units within a 1/2 mile radius of the project, plus the number of residential units included in the project are 6578.

The employment for the study area (within a 1/2 mile radius of the project) is 7894.

Residential Local-Serving Retail Mitigation

Percent Reduction in Trips is 2% (calculated as a % of 9.57 trips/day)
Note that the above percent is applied to a baseline of 9.57 and that product is subtracted from the Unmitigated Trips
Inputs Selected:

The Presence of Local-Serving Retail checkbox was selected.

Non-Residential Mitigation Measures

Non-Residential Mix of Uses Mitigation

Percent Reduction in Trips is 7.67%

Inputs Selected:

The number of housing units within a 1/2 mile radius of the project, plus the number of residential units included in the project are 6578.

The employment for the study area (within a 1/2 mile radius of the project) is 7894.

Non-Residential Local-Serving Retail Mitigation

Percent Reduction in Trips is 2%

Inputs Selected:

The Presence of Local-Serving Retail checkbox was selected.

Page: 6 02/14/2007 9:40 AM

Changes made to the default values for Land Use Trip Percentages

Changes made to the default values for Area

The area souce mitigation measure option switch changed from off to on. The natural gas single family usage rate changed from 6665.0 to 4094.1. The natural gas multi-family usage rate changed from 4011.5 to 2288.9. The wood stove percentage changed from 67 to 0. The natural gas fireplace percentage changed from 33 to 100. The landscape year changed from 2006 to 2009. The consumer product ROG pounds per person changed from 0.0171 to 0.0151.

Changes made to the default values for Operations

The mitigation option switch changed from off to on.

The operational emission year changed from 2006 to 2009.

The home based work selection item changed from 8 to 7.

The home based shopping selection item changed from 8 to 7.

The home based shopping urban trip length changed from 7.3 to 2.

The home based other selection item changed from 8 to 7.

The commercial based commute selection item changed from 8 to 7.

The commercial based non-work selection item changed from 8 to 7.

The commercial based customer selection item changed from 8 to 7.

The Res and Non-Res Mix of Uses Mitigation changed from off to on.

The Res and Non-Res Local-Serving Retail Mitigation changed from off to on.

Page: 1 02/14/2007 9:41 AM

URBEMIS 2002 For Windows 8.7.0

H:\ClientData\Castle and Cooke\Gateway Project Madera\GATEWAY AIR STUDY 8-17-06 (distrib Gateway Village Operations Non-Residential Template File Name:

Project Name: Project Location:

On-Road Motor Vehicle Emissions Based on EMFAC2002 version 2.2

SUMMARY REPORT

(Tons/Year)

AREA SOURCE EMISSION ESTIMATES	_				
	ROG	NOx	CO	S02	PM10
TOTALS (tpy, unmitigated)	11.53	1.94	4.06	0.02	0.01
TOTALS (tpy, mitigated)	11.53	1.94	4.06	0.02	0.01
OPERATIONAL (VEHICLE) EMISSION		ATES			
	ROG	NOx	CO	SO2	PM10
TOTALS (tpy, unmitigated)	26.14	30.32	282.05	0.20	15.52
TOTALS (tpy, mitigated)	23.73	27.16	252.64	0.18	13.90
SUM OF AREA AND OPERATIONAL EN	MISSION	ESTIMATES			
	ROG	NOx	CO	SO2	PM10
TOTALS (tpy, unmitigated)	37.67	32.26	286.12	0.22	15.53
, 11,	35.26	29.10	256.71	0.20	13.92
TOTALS (tpy, mitigated)	35.26	29.10	256.71	0.20	13.94

Page: 2 02/14/2007 9:41 AM

URBEMIS 2002 For Windows 8.7.0

File Name: H:\ClientData\Castle and Cooke\Gateway Project Madera\GATEWAY AIR STUDY 8-17-06 (distrib Project Name: Gateway Village Operations Project Location: Non-Residential Template On-Road Motor Vehicle Emissions Based on EMFAC2002 version 2.2

DETAIL REPORT (Tons/Year)

AREA SOURCE EMISSION ESTIMATES	(Tons	per Year,	Unmitigated)	
Source	ROG	NOx	CO	SO2	PM10
Natural Gas	0.14	1.89	0.95	0.00	0.00
Hearth	0.00	0.00	0.00	0.00	0.00
Landscaping	0.39	0.05	3.12	0.02	0.01
Consumer Prdcts	9.15	-	-	-	-
Architectural Coatings	1.84	-	-	-	-
TOTALS (tpy, unmitigated)	11.53	1.94	4.06	0.02	0.01
AREA SOURCE EMISSION ESTIMATES	(Tons	per Year,	Mitigated)		
Source	ROG	NOx	CO	S02	PM10
Natural Gas	0.14	1.89	0.95	0	0.00
Hearth	0.00	0.00	0.00	0.00	0.00
Landscaping	0.39	0.05	3.12	0.02	0.01
Consumer Prdcts					
CONSUMCI TIACES	9.15	_	_	_	-
Architectural Coatings TOTALS (tpy, mitigated)	$9.15 \\ 1.84$	-	-	-	-

Area Source Mitigation Measures

UNMITIGATED OPERATIONAL EMISSIONS

ROG	NOx	CO	SO2	PM10
11.61	14.35	135.00	0.10	7.48
1.53	1.82	17.16	0.01	0.95
0.98	1.05	9.84	0.01	0.55
2.23	1.45	13.39	0.01	0.74
0.09	0.07	0.64	0.00	0.04
4.00	4.86	44.13	0.03	2.44
5.70	6.72	61.90	0.04	3.33
26.14	30.32	282.05	0.20	15.52
	11.61 1.53 0.98 2.23 0.09 4.00 5.70	11.61 14.35 1.53 1.82 0.98 1.05 2.23 1.45 0.09 0.07 4.00 4.86 5.70 6.72	11.61 14.35 135.00 1.53 1.82 17.16 0.98 1.05 9.84 2.23 1.45 13.39 0.09 0.07 0.64 4.00 4.86 44.13 5.70 6.72 61.90	11.61 14.35 135.00 0.10 1.53 1.82 17.16 0.01 0.98 1.05 9.84 0.01 2.23 1.45 13.39 0.01 0.09 0.07 0.64 0.00 4.00 4.86 44.13 0.03 5.70 6.72 61.90 0.04

Includes correction for passby trips.

Does not include double counting adjustment for internal trips.

OPERATIONAL (Vehicle) EMISSION ESTIMATES

Season: Annual Analysis Year: 2010

EMFAC Version: EMFAC2002 (9/2002)

Summary of Land Uses:

Unit Type	Acreage	Trip Rate	No. Total Units Trips
Single family housing	283.67	9.57 trips/dwelling unit	851.00 8,144.07
Apartments low rise	9.38	6.90 trips/dwelling unit	150.00 1,035.00
Retirement community	32.00	3.71 trips/dwelling unit	160.00 593.60
Elementary school		1.29 trips/students	800.00 1,032.00
City park		1.59 trips/acres	29.60 47.06
Regnl shop. center		42.94 trips/1000 sq. ft.	87.12 3,740.93
Government office building		68.93 trips/1000 sq. ft.	78.41 5,404.80

Sum of Total Trips 19,997.47
Total Vehicle Miles Traveled 112,329.07

Vehicle Assumptions:

Fleet Mix:

Vehicle Type	Percent Type	Non-Catalyst	Catalyst	Diesel
Light Auto	54.70	1.10	98.70	0.20
Light Truck < 3,750 lbs	15.20	2.00	96.00	2.00
Light Truck 3,751- 5,750	16.20	1.20	98.10	0.70
Med Truck 5,751-8,500	7.30	1.40	95.90	2.70
Lite-Heavy 8,501-10,000	1.10	0.00	81.80	18.20
Lite-Heavy 10,001-14,000	0.30	0.00	66.70	33.30
Med-Heavy 14,001-33,000	1.00	0.00	20.00	80.00
Heavy-Heavy 33,001-60,000	0.90	0.00	11.10	88.90
Line Haul > 60,000 lbs	0.00	0.00	0.00	100.00
Urban Bus	0.20	0.00	50.00	50.00
Motorcycle	1.60	68.80	31.20	0.00
School Bus	0.10	0.00	0.00	100.00
Motor Home	1.40	7.10	85.70	7.20

	Residential			Commercial		
	Home-	Home-	Home-			
	Work	Shop	Other	Commute	Non-Work	Customer
Urban Trip Length (miles)	10.8	2.0	7.5	9.5	7.4	7.4
Rural Trip Length (miles)	16.8	7.1	7.9	14.7	6.6	6.6
Trip Speeds (mph)	35.0	35.0	35.0	35.0	35.0	35.0
% of Trips - Residential	32.9	18.0	49.1			
% of Trips - Commercial (by land	l use)				
Elementary school	-			20.0	10.0	70.0
City park				5.0	2.5	92.5
Regnl shop. center				2.0	1.0	97.0
Government office building				10.0	5.0	85.0

MITIGATED OPERATIONAL EMISSIONS

	ROG	NOx	CO	SO2	PM10
Single family housing	10.60	12.97	121.95	0.09	6.76
Apartments low rise	1.35	1.58	14.86	0.01	0.82
Retirement community	0.79	0.79	7.39	0.01	0.41
Elementary school	2.12	1.31	12.10	0.01	0.67
City park	0.09	0.06	0.58	0.00	0.03
Regnl shop. center	3.62	4.39	39.86	0.03	2.20
Goverment office building	5.16	6.07	55.91	0.04	3.01
TOTAL EMISSIONS (tons/yr)	23.73	27.16	252.64	0.18	13.90
PERCENTAGE REDUCTION %	9	10	10	10	10

Includes correction for passby trips.

Does not include double counting adjustment for internal trips.

OPERATIONAL (Vehicle) EMISSION ESTIMATES

Analysis Year: 2010 Season: Annual

EMFAC Version: EMFAC2002 (9/2002)

Summary of Land Uses:

Unit Type	Acreage	Trip	Rate	No. Units	Total Trips
Single family housing Apartments low rise Retirement community Elementary school City park Regnl shop. center Goverment office building	283.67 9.38 32.00	6.90 3.71 1.29 1.59 42.94	trips/dwelling unit trips/dwelling unit trips/dwelling unit trips/students trips/acres trips/1000 sq. ft. trips/1000 sq. ft.	150.00 160.00 800.00 29.60 87.12	1,032.00

Sum of Total Trips 19,997.47
Total Vehicle Miles Traveled 112,329.07

Vehicle Assumptions:

Fleet Mix:

Vehicle Type	Percent Type	Non-Catalyst	Catalyst	Diesel
Light Auto	54.70	1.10	98.70	0.20
Light Truck < 3,750 lbs	15.20	2.00	96.00	2.00
Light Truck 3,751- 5,750	16.20	1.20	98.10	0.70
Med Truck 5,751-8,500	7.30	1.40	95.90	2.70
Lite-Heavy 8,501-10,000	1.10	0.00	81.80	18.20
Lite-Heavy 10,001-14,000	0.30	0.00	66.70	33.30
Med-Heavy 14,001-33,000	1.00	0.00	20.00	80.00
Heavy-Heavy 33,001-60,000	0.90	0.00	11.10	88.90
Line Haul > 60,000 lbs	0.00	0.00	0.00	100.00
Urban Bus	0.20	0.00	50.00	50.00
Motorcycle	1.60	68.80	31.20	0.00
School Bus	0.10	0.00	0.00	100.00
Motor Home	1.40	7.10	85.70	7.20

		Residential	Commercial			
	Home-	Home-	Home-			
	Work	Shop	Other	Commute	Non-Work	Customer
Urban Trip Length (miles)	10.8	2.0	7.5	9.5	7.4	7.4
Rural Trip Length (miles)	16.8	7.1	7.9	14.7	6.6	6.6
Trip Speeds (mph)	35.0	35.0	35.0	35.0	35.0	35.0
% of Trips - Residential	32.9	18.0	49.1			
% of Trips - Commercial (hu land	1150)				
Elementary school	by rand	use,		20.0	10.0	70.0
City park				5.0	2.5	92.5
Regnl shop. center				2.0	1.0	97.0
Government office building				10.0	5.0	85.0
_						

Page: 5 02/14/2007 9:41 AM

MITIGATION OPTIONS SELECTED

Residential Mitigation Measures

Residential Mix of Uses Mitigation

Percent Reduction in Trips is 7.67% (calculated as a % of 9.57 trips/day)
Note that the above percent is applied to a baseline of 9.57 and that product is subtracted from the Unmitigated Trips
Inputs Selected:

The number of housing units within a 1/2 mile radius of the project, plus the

number of residential units included in the project are 6578.

The employment for the study area (within a 1/2 mile radius of the project) is 7894.

Residential Local-Serving Retail Mitigation

Percent Reduction in Trips is 2% (calculated as a % of 9.57 trips/day)
Note that the above percent is applied to a baseline of 9.57 and that product is subtracted from the Unmitigated Trips
Inputs Selected:

The Presence of Local-Serving Retail checkbox was selected.

Non-Residential Mitigation Measures

Non-Residential Mix of Uses Mitigation

Percent Reduction in Trips is 7.67%

Inputs Selected:

The number of housing units within a 1/2 mile radius of the project, plus the number of residential units included in the project are 6578.

The employment for the study area (within a 1/2 mile radius of the project) is 7894.

Non-Residential Local-Serving Retail Mitigation

Percent Reduction in Trips is 2%

Inputs Selected:

The Presence of Local-Serving Retail checkbox was selected.

Page: 6 02/14/2007 9:41 AM

Changes made to the default values for Land Use Trip Percentages

Changes made to the default values for Area

The area souce mitigation measure option switch changed from off to on. The natural gas single family usage rate changed from 6665.0 to 4094.1. The natural gas multi-family usage rate changed from 4011.5 to 2288.9. The wood stove percentage changed from 67 to 0. The natural gas fireplace percentage changed from 33 to 100. The landscape year changed from 2006 to 2010. The consumer product ROG pounds per person changed from 0.0171 to 0.0151.

Changes made to the default values for Operations

The mitigation option switch changed from off to on.

The operational emission year changed from 2006 to 2010.

The home based work selection item changed from 8 to 7.

The home based shopping selection item changed from 8 to 7.

The home based shopping urban trip length changed from 7.3 to 2.

The home based other selection item changed from 8 to 7.

The commercial based commute selection item changed from 8 to 7.

The commercial based non-work selection item changed from 8 to 7.

The commercial based customer selection item changed from 8 to 7.

The Res and Non-Res Mix of Uses Mitigation changed from off to on.

The Res and Non-Res Local-Serving Retail Mitigation changed from off to on.

Page: 1

File Name:

02/14/2007 9:42 AM

TOTALS (tpy, unmitigated)
TOTALS (tpy, mitigated)

URBEMIS 2002 For Windows 8.7.0

H:\ClientData\Castle and Cooke\Gateway Project Madera\GATEWAY AIR STUDY 8-17-06 (distrib Gateway Village Operations Non-Residential Template Project Name: Project Location:

On-Road Motor Vehicle Emissions Based on EMFAC2002 version 2.2

SUMMARY REPORT (Tons/Year)

(10115)	1001/				
AREA SOURCE EMISSION ESTIMATES					
	ROG	NOx	CO	SO2	PM10
TOTALS (tpy, unmitigated)	16.23	2.78	5.67	0.03	0.02
TOTALS (tpy, mitigated)	16.23	2.78	5.67	0.03	0.02
OPERATIONAL (VEHICLE) EMISSION	ESTIMAT	res			
	ROG	NOx	CO	SO2	PM10
TOTALS (tpy, unmitigated)	37.74	44.35	411.98	0.29	22.68
TOTALS (tpy, mitigated)	34.22	39.74	369.09	0.26	20.32
SUM OF AREA AND OPERATIONAL EMI	SSION E	ESTIMATES			
	ROG	NOx	CO	SO2	PM10

47.13

42.51

417.65

374.76

22.70

20.34

0.31

0.28

53.97

50.44

Page: 2 02/14/2007 9:42 AM

URBEMIS 2002 For Windows 8.7.0

H:\ClientData\Castle and Cooke\Gateway Project Madera\GATEWAY AIR STUDY 8-17-06 (distrib Gateway Village Operations Non-Residential Template

File Name: Project Name: Project Location:

On-Road Motor Vehicle Emissions Based on EMFAC2002 version 2.2

DETAIL REPORT (Tons/Year)

AREA SOURCE EMISSION ESTIMATES Source Natural Gas Hearth Landscaping Consumer Prdcts Architectural Coatings TOTALS (tpy, unmitigated)	(Tons p ROG 0.21 0.00 0.54 12.85 2.63 16.23	per Year, NOX 2.71 0.00 0.07 - - 2.78	Unmitigated) CO 1.37 0.00 4.29 - 5.67	SO2 0.00 0.00 0.03 - 0.03	PM10 0.01 0.00 0.01 - 0.02
AREA SOURCE EMISSION ESTIMATES	(Tons p	er Year,	Mitigated)		
Source	ROG	NOx	CO	S02	PM10
Natural Gas	0.21	2.71	1.37	0	0.01
Hearth	0.00	0.00	0.00	0.00	0.00
Landscaping	0.54	0.07	4.29	0.03	0.01
Consumer Prdcts	12.85	_	-	-	-
Architectural Coatings	2.63	-	-	-	_
TOTALS (tpy, mitigated)	16.23	2.78	5.67	0.03	0.02

Area Source Mitigation Measures

Page: 3 02/14/2007 9:42 AM

UNMITIGATED OPERATIONAL EMISSIONS

	ROG	NOx	CO	SO2	PM10
Single family housing	16.37	20.24	190.36	0.13	10.55
Apartments low rise	1.94	2.31	21.73	0.02	1.20
Retirement community	1.47	1.57	14.76	0.01	0.82
Elementary school	2.23	1.45	13.39	0.01	0.74
City park	0.14	0.11	0.96	0.00	0.06
Regnl shop. center	8.00	9.71	88.25	0.06	4.88
Goverment office building	7.60	8.95	82.52	0.06	4.44
TOTAL EMISSIONS (tons/yr)	37.74	44.35	411.98	0.29	22.68

Includes correction for passby trips. Does not include double counting adjustment for internal trips.

OPERATIONAL (Vehicle) EMISSION ESTIMATES

Analysis Year: 2010 Season: Annual

EMFAC Version: EMFAC2002 (9/2002)

Summary of Land Uses:

Unit Type	Acreage	Trip	Rate	Units Trips
Single family housing	400.00	9.57	trips/dwelling unit	1,200.0011,484.00
Apartments low rise	11.88	6.90	trips/dwelling unit	190.00 1,311.00
Retirement community	48.00	3.71	trips/dwelling unit	240.00 890.40
Elementary school		1.29	trips/students	800.00 1,032.00
City park		1.59	trips/acres	44.20 70.28
Regnl shop. center		42.94	trips/1000 sq. ft.	174.24 7,481.87
Government office building		68.93	trips/1000 sq. ft.	104.54 7,205.94

Sum of Total Trips 29,475.49
Total Vehicle Miles Traveled 164,165.27

Vehicle Assumptions:

Fleet Mix:

Vehicle Type	Percent Type	Non-Catalyst	Catalyst	Diesel
Light Auto	54.70	1.10	98.70	0.20
Light Truck < 3,750 lbs	15.20	2.00	96.00	2.00
Light Truck 3,751- 5,750	16.20	1.20	98.10	0.70
Med Truck 5,751-8,500	7.30	1.40	95.90	2.70
Lite-Heavy 8,501-10,000	1.10	0.00	81.80	18.20
Lite-Heavy 10,001-14,000	0.30	0.00	66.70	33.30
Med-Heavy 14,001-33,000	1.00	0.00	20.00	80.00
Heavy-Heavy 33,001-60,000	0.90	0.00	11.10	88.90
Line Haul > 60,000 lbs	0.00	0.00	0.00	100.00
Urban Bus	0.20	0.00	50.00	50.00
Motorcycle	1.60	68.80	31.20	0.00
School Bus	0.10	0.00	0.00	100.00
Motor Home	1.40	7.10	85.70	7.20

		Residential			Commercial	
	Home-	Home-	Home-			
	Work	Shop	Other	Commute	Non-Work	Customer
Urban Trip Length (miles)	10.8	2.0	7.5	9.5	7.4	7.4
Rural Trip Length (miles)	16.8	7.1	7.9	14.7	6.6	6.6
Trip Speeds (mph)	35.0	35.0	35.0	35.0	35.0	35.0
% of Trips - Residential	32.9	18.0	49.1			
% of Trips - Commercial (by land	l use)				
Elementary school				20.0	10.0	70.0
City park				5.0	2.5	92.5
Regnl shop. center				2.0	1.0	97.0
Government office building				10.0	5.0	85.0

Page: 4 02/14/2007 9:42 AM

MITIGATED OPERATIONAL EMISSIONS

	ROG	NOx	CO	SO2	PM10
Single family housing	14.94	18.29	171.96	0.12	9.53
Apartments low rise	1.71	2.00	18.82	0.01	1.04
Retirement community	1.18	1.18	11.08	0.01	0.61
Elementary school	2.12	1.31	12.10	0.01	0.67
City park	0.13	0.10	0.87	0.00	0.05
Regnl shop. center	7.25	8.77	79.72	0.06	4.41
Goverment office building	6.88	8.09	74.55	0.05	4.01
TOTAL EMISSIONS (tons/yr)	34.22	39.74	369.09	0.26	20.32
PERCENTAGE REDUCTION %	9	10	10	10	10

Includes correction for passby trips.

Does not include double counting adjustment for internal trips.

OPERATIONAL (Vehicle) EMISSION ESTIMATES

Analysis Year: 2010 Season: Annual

EMFAC Version: EMFAC2002 (9/2002)

Summary of Land Uses:

Unit Type	Acreage	Trip	Rate	No. Total Units Trips
Single family housing	400.00	9.57	trips/dwelling unit	1,200.0011,484.00
Apartments low rise	11.88	6.90	trips/dwelling unit	190.00 1,311.00
Retirement community	48.00	3.71	trips/dwelling unit	240.00 890.40
Elementary school		1.29	trips/students	800.00 1,032.00
City park		1.59	trips/acres	44.20 70.28
Regnl shop. center		42.94	trips/1000 sq. ft.	174.24 7,481.87
Government office building		68.93	trips/1000 sq. ft.	104.54 7,205.94

Sum of Total Trips 29,475.49
Total Vehicle Miles Traveled 164,165.27

Vehicle Assumptions:

Fleet Mix:

Vehicle Type	Percent Type	Non-Catalyst	Catalyst	Diesel
Light Auto	54.70	1.10	98.70	0.20
Light Truck < 3,750 lb	s 15.20	2.00	96.00	2.00
Light Truck 3,751- 5,75	0 16.20	1.20	98.10	0.70
Med Truck 5,751-8,50	0 7.30	1.40	95.90	2.70
Lite-Heavy 8,501-10,00	0 1.10	0.00	81.80	18.20
Lite-Heavy 10,001-14,00	0 0.30	0.00	66.70	33.30
Med-Heavy 14,001-33,00	0 1.00	0.00	20.00	80.00
Heavy-Heavy 33,001-60,00	0 0.90	0.00	11.10	88.90
Line Haul > 60,000 lb	s 0.00	0.00	0.00	100.00
Urban Bus	0.20	0.00	50.00	50.00
Motorcycle	1.60	68.80	31.20	0.00
School Bus	0.10	0.00	0.00	100.00
Motor Home	1.40	7.10	85.70	7.20

	Residential			Commercial		
	Home-	Home-	Home-			
	Work	Shop	Other	Commute	Non-Work	Customer
Urban Trip Length (miles)	10.8	2.0	7.5	9.5	7.4	7.4
Rural Trip Length (miles)	16.8	7.1	7.9	14.7	6.6	6.6
Trip Speeds (mph)	35.0	35.0	35.0	35.0	35.0	35.0
% of Trips - Residential	32.9	18.0	49.1			
% of Trips - Commercial (by land	use)				
Elementary school				20.0	10.0	70.0
City park				5.0	2.5	92.5
Regnl shop. center				2.0	1.0	97.0
Goverment office building				10.0	5.0	85.0

Page: 5 02/14/2007 9:42 AM

MITIGATION OPTIONS SELECTED

Residential Mitigation Measures

Residential Mix of Uses Mitigation

Percent Reduction in Trips is 7.67% (calculated as a % of 9.57 trips/day) Note that the above percent is applied to a baseline of 9.57 and that product is subtracted from the Unmitigated Trips Inputs Selected:

The number of housing units within a 1/2 mile radius of the project, plus the number of residential units included in the project are 6578. The employment for the study area (within a 1/2 mile radius of the project) is 7894.

Residential Local-Serving Retail Mitigation

Percent Reduction in Trips is 2% (calculated as a % of 9.57 trips/day) Note that the above percent is applied to a baseline of 9.57 and that product is subtracted from the Unmitigated Trips Inputs Selected:

The Presence of Local-Serving Retail checkbox was selected.

Non-Residential Mitigation Measures

Non-Residential Mix of Uses Mitigation

Percent Reduction in Trips is 7.67%

Inputs Selected:

The number of housing units within a 1/2 mile radius of the project, plus the number of residential units included in the project are 6578. The employment for the study area (within a 1/2 mile radius of the project) is 7894.

Non-Residential Local-Serving Retail Mitigation

Percent Reduction in Trips is 2%

Inputs Selected:

The Presence of Local-Serving Retail checkbox was selected.

```
Page: 6
02/14/2007 9:42 AM

Changes made to the default values for Land Use Trip Percentages

Changes made to the default values for Area
```

The area souce mitigation measure option switch changed from off to on. The natural gas single family usage rate changed from 6665.0 to 4094.1. The natural gas multi-family usage rate changed from 4011.5 to 2288.9. The wood stove percentage changed from 67 to 0. The natural gas fireplace percentage changed from 33 to 100. The landscape year changed from 2006 to 2010. The consumer product ROG pounds per person changed from 0.0171 to 0.0151.

Changes made to the default values for Operations

The mitigation option switch changed from off to on.

The operational emission year changed from 2006 to 2010.

The home based work selection item changed from 8 to 7.

The home based shopping selection item changed from 8 to 7.

The home based shopping urban trip length changed from 7.3 to 2.

The home based other selection item changed from 8 to 7.

The commercial based commute selection item changed from 8 to 7.

The commercial based non-work selection item changed from 8 to 7.

The commercial based customer selection item changed from 8 to 7.

The Res and Non-Res Mix of Uses Mitigation changed from off to on.

The Res and Non-Res Local-Serving Retail Mitigation changed from off to on.

Page: 1 02/14/2007 9:42 AM

URBEMIS 2002 For Windows 8.7.0

H:\ClientData\Castle and Cooke\Gateway Project Madera\GATEWAY AIR STUDY 8-17-06 (distrib Gateway Village Operations Non-Residential Template File Name:

Project Name:

Project Location:

On-Road Motor Vehicle Emissions Based on EMFAC2002 version 2.2

SUMMARY REPORT (Tons/Year)

AREA SOURCE EMISSION ESTIMAT	ES				
	ROG	NOx	CO	SO2	PM10
TOTALS (tpy, unmitigated)	16.23	2.78	5.67	0.03	0.02
TOTALS (tpy, mitigated)	16.23	2.78	5.67	0.03	0.02
OPERATIONAL (VEHICLE) EMISSION	ON ESTIMAT	∃ S			
	ROG	NOx	CO	SO2	PM10
TOTALS (tpy, unmitigated)	24.29	27.01	254.71	0.29	22.61
TOTALS (tpy, mitigated)	22.07	24.20	228.19	0.26	20.25
SUM OF AREA AND OPERATIONAL	EMISSION E	STIMATES			
	ROG	NOx	CO	SO2	PM10
TOTALS (tpy, unmitigated)	40.52	29.79	260.38	0.31	22.63
TOTALS (tpy, mitigated)	38.30	26.98	233.86	0.28	20.27

Page: 2 02/14/2007 9:42 AM

URBEMIS 2002 For Windows 8.7.0

File Name: H:\ClientData\Castle and Cooke\Gateway Project Madera\GATEWAY AIR STUDY 8-17-06 (distrib Project Name: Gateway Village Operations Project Location: Non-Residential Template On-Road Motor Vehicle Emissions Based on EMFAC2002 version 2.2

DETAIL REPORT (Tons/Year)

AREA SOURCE EMISSION ESTIMATES	(Tons	per Year,	Unmitigated)		
Source	ROG	NOx	CO	S02	PM10
Natural Gas	0.21	2.71	1.37	0.00	0.01
Hearth	0.00	0.00	0.00	0.00	0.00
Landscaping	0.54	0.07	4.29	0.03	0.01
Consumer Prdcts	12.85	-	-	-	-
Architectural Coatings	2.63	-	-	-	-
TOTALS (tpy, unmitigated)	16.23	2.78	5.67	0.03	0.02
AREA SOURCE EMISSION ESTIMATES	(Tons	per Year,	Mitigated)		
AREA SOURCE EMISSION ESTIMATES Source	(Tons	per Year, NOx	Mitigated) CO	S02	PM10
	•	-	_	SO2 0	PM10 0.01
Source	ROG	NOx	CO		
Source Natural Gas	ROG 0.21	NOx 2.71	CO 1.37	0	0.01
Source Natural Gas Hearth	ROG 0.21 0.00	NOx 2.71 0.00	CO 1.37 0.00	0.00	0.01 0.00
Source Natural Gas Hearth Landscaping	ROG 0.21 0.00 0.54	NOx 2.71 0.00	CO 1.37 0.00	0.00	0.01 0.00

Area Source Mitigation Measures

Page: 3 02/14/2007 9:42 AM

UNMITIGATED OPERATIONAL EMISSIONS

	ROG	NOx	CO	SO2	PM10
Single family housing	10.50	12.30	117.74	0.13	10.52
Apartments low rise	1.25	1.40	13.44	0.02	1.20
Retirement community	0.97	0.95	9.13	0.01	0.82
Elementary school	1.56	0.89	8.28	0.01	0.73
City park	0.10	0.06	0.59	0.00	0.06
Regnl shop. center	5.09	5.93	54.48	0.06	4.86
Government office building	4.83	5.47	51.04	0.06	4.42
TOTAL EMISSIONS (tons/yr)	24.29	27.01	254.71	0.29	22.61

Includes correction for passby trips. Does not include double counting adjustment for internal trips.

OPERATIONAL (Vehicle) EMISSION ESTIMATES

Analysis Year: 2015 Season: Annual

EMFAC Version: EMFAC2002 (9/2002)

Summary of Land Uses:

Unit Type	Acreage	Trip	Rate		rips
Single family housing	400.00	9.57	trips/dwelling uni	1,200.0011,48	4.00
Apartments low rise	11.88	6.90	trips/dwelling uni	190.00 1,31	1.00
Retirement community	48.00	3.71	trips/dwelling uni	240.00 89	0.40
Elementary school		1.29	trips/students	800.00 1,03	2.00
City park		1.59	trips/acres	44.20 7	0.28
Regnl shop. center		42.94	trips/1000 sq. ft.	174.24 7,48	1.87
Government office building		68.93	trips/1000 sq. ft.	104.54 7,20	5.94

Sum of Total Trips 29,475.49 Total Vehicle Miles Traveled 164,165.27

Vehicle Assumptions:

Fleet Mix:

Vehicle Type	Percent Type	Non-Catalyst	Catalyst	Diesel
Light Auto	54.40	0.40	99.40	0.20
Light Truck < 3,750	lbs 15.30	0.70	98.00	1.30
Light Truck 3,751-5,7	750 16.40	0.60	98.80	0.60
Med Truck 5,751-8,5	7.30	0.00	98.60	1.40
Lite-Heavy 8,501-10,0	000 1.10	0.00	81.80	18.20
Lite-Heavy 10,001-14,0	000 0.30	0.00	66.70	33.30
Med-Heavy 14,001-33,0	000 1.00	0.00	20.00	80.00
Heavy-Heavy 33,001-60,0	0.80	0.00	0.00	100.00
Line Haul > 60,000	lbs 0.00	0.00	0.00	100.00
Urban Bus	0.20	0.00	50.00	50.00
Motorcycle	1.60	50.00	50.00	0.00
School Bus	0.10	0.00	0.00	100.00
Motor Home	1.50	0.00	93.30	6.70

	Residential			Commercial		
	Home-	Home-	Home-			
	Work	Shop	Other	Commute	Non-Work	Customer
Urban Trip Length (miles)	10.8	2.0	7.5	9.5	7.4	7.4
Rural Trip Length (miles)	16.8	7.1	7.9	14.7	6.6	6.6
Trip Speeds (mph)	35.0	35.0	35.0	35.0	35.0	35.0
% of Trips - Residential	32.9	18.0	49.1			
% of Trips - Commercial (by land	use)				
Elementary school	•			20.0	10.0	70.0
City park				5.0	2.5	92.5
Regnl shop. center				2.0	1.0	97.0
Government office building				10.0	5.0	85.0

Page: 4 02/14/2007 9:42 AM

MITIGATED OPERATIONAL EMISSIONS

	ROG	NOx	CO	SO2	PM10
Single family housing	9.60	11.11	106.36	0.12	9.50
Apartments low rise	1.11	1.22	11.64	0.01	1.04
Retirement community	0.79	0.72	6.85	0.01	0.61
Elementary school	1.49	0.80	7.48	0.01	0.66
City park	0.09	0.06	0.53	0.00	0.05
Regnl shop. center	4.61	5.36	49.22	0.06	4.39
Goverment office building	4.38	4.94	46.11	0.05	3.99
TOTAL EMISSIONS (tons/yr)	22.07	24.20	228.19	0.26	20.25
PERCENTAGE REDUCTION %	9	10	10	10	10

Includes correction for passby trips.

Does not include double counting adjustment for internal trips.

OPERATIONAL (Vehicle) EMISSION ESTIMATES

Analysis Year: 2015 Season: Annual

EMFAC Version: EMFAC2002 (9/2002)

Summary of Land Uses:

Unit Type	Acreage	Trip Rate	No. Total Units Trips
Single family housing	400.00	9.57 trips/dwelling uni	
Apartments low rise Retirement community	11.88 48.00	6.90 trips/dwelling uni 3.71 trips/dwelling uni	
Elementary school City park		1.29 trips/students 1.59 trips/acres	800.00 1,032.00 44.20 70.28
Regnl shop. center		42.94 trips/1000 sq. ft.	174.24 7,481.87
Goverment office building		68.93 trips/1000 sq. ft.	104.54 7,205.94

Sum of Total Trips 29,475.49
Total Vehicle Miles Traveled 164,165.27

Vehicle Assumptions:

Fleet Mix:

Vehicle Type	Percent Type	Non-Catalyst	Catalyst	Diesel
Light Auto	54.40	0.40	99.40	0.20
Light Truck < 3,750 lbs	15.30	0.70	98.00	1.30
Light Truck 3,751- 5,750	16.40	0.60	98.80	0.60
Med Truck 5,751-8,500	7.30	0.00	98.60	1.40
Lite-Heavy 8,501-10,000	1.10	0.00	81.80	18.20
Lite-Heavy 10,001-14,000	0.30	0.00	66.70	33.30
Med-Heavy 14,001-33,000	1.00	0.00	20.00	80.00
Heavy-Heavy 33,001-60,000	0.80	0.00	0.00	100.00
Line Haul > 60,000 lbs	0.00	0.00	0.00	100.00
Urban Bus	0.20	0.00	50.00	50.00
Motorcycle	1.60	50.00	50.00	0.00
School Bus	0.10	0.00	0.00	100.00
Motor Home	1.50	0.00	93.30	6.70

TIAVCI COMMICIONS						
	Residential			Commercial		
	Home-	Home-	Home-			
	Work	Shop	Other	Commute	Non-Work	Customer
Urban Trip Length (miles)	10.8	2.0	7.5	9.5	7.4	7.4
Rural Trip Length (miles)	16.8	7.1	7.9	14.7	6.6	6.6
Trip Speeds (mph)	35.0	35.0	35.0	35.0	35.0	35.0
% of Trips - Residential	32.9	18.0	49.1			
% of Trips - Commercial (by land	use)				
Elementary school				20.0	10.0	70.0
City park				5.0	2.5	92.5
Regnl shop. center				2.0	1.0	97.0
Goverment office building				10.0	5.0	85.0

Page: 5 02/14/2007 9:42 AM

MITIGATION OPTIONS SELECTED

Residential Mitigation Measures

Residential Mix of Uses Mitigation

Residencial MIX of oses Michaelon

Percent Reduction in Trips is 7.67% (calculated as a % of 9.57 trips/day)
Note that the above percent is applied to a baseline of 9.57 and that product is subtracted from the Unmitigated Trips

Inputs Selected:

The number of housing units within a 1/2 mile radius of the project, plus the number of residential units included in the project are 6578.

The employment for the study area (within a 1/2 mile radius of the project) is 7894.

Residential Local-Serving Retail Mitigation

Percent Reduction in Trips is 2% (calculated as a % of 9.57 trips/day)

Note that the above percent is applied to a baseline of 9.57 and that product is subtracted from the Unmitigated Trips
Inputs Selected:

The Presence of Local-Serving Retail checkbox was selected.

Non-Residential Mitigation Measures

Non-Residential Mix of Uses Mitigation

Percent Reduction in Trips is 7.67%

Inputs Selected:

The number of housing units within a 1/2 mile radius of the project, plus the number of residential units included in the project are 6578.

The employment for the study area (within a 1/2 mile radius of the project) is 7894.

Non-Residential Local-Serving Retail Mitigation

Percent Reduction in Trips is 2%

Inputs Selected:

The Presence of Local-Serving Retail checkbox was selected.

Page: 6 02/14/2007 9:42 AM

Changes made to the default values for Land Use Trip Percentages

Changes made to the default values for Area

The area souce mitigation measure option switch changed from off to on. The natural gas single family usage rate changed from 6665.0 to 4094.1. The natural gas multi-family usage rate changed from 4011.5 to 2288.9. The wood stove percentage changed from 67 to 0. The natural gas fireplace percentage changed from 33 to 100. The landscape year changed from 2006 to 2015. The consumer product ROG pounds per person changed from 0.0171 to 0.0151.

Changes made to the default values for Operations

The mitigation option switch changed from off to on.
The operational emission year changed from 2006 to 2015.
The home based work selection item changed from 8 to 7.
The home based shopping selection item changed from 8 to 7.
The home based shopping urban trip length changed from 7.3 to 2.
The home based other selection item changed from 8 to 7.
The commercial based commute selection item changed from 8 to 7.
The commercial based non-work selection item changed from 8 to 7.
The commercial based customer selection item changed from 8 to 7.
The Res and Non-Res Mix of Uses Mitigation changed from off to on.
The Res and Non-Res Local-Serving Retail Mitigation changed from off to on.

Page: 1 02/14/2007 9:43 AM

URBEMIS 2002 For Windows 8.7.0

File Name: H:\ClientData\Castle and Cooke\Gateway Project Madera\GATEWAY AIR STUDY 8-17-06 (distrib

Project Name: Gateway Village Operations
Project Location: Non-Residential Template
On-Road Motor Vehicle Emissions Based on EMFAC2002 version 2.2

SUMMARY REPORT (Tons/Year)

AREA SOURCE EMISSION ESTIMATE	S				
	ROG	NOx	CO	SO2	PM10
TOTALS (tpy, unmitigated)	20.99	3.72	7.35	0.03	0.02
TOTALS (tpy, mitigated)	20.99	3.72	7.35	0.03	0.02
OPERATIONAL (VEHICLE) EMISSIC	N ESTIMAT	res			
	ROG	$\mathbf{N} \mathbf{O} \mathbf{x}$	CO	SO2	PM10
TOTALS (tpy, unmitigated)	51.58	59.83	555.32	0.39	30.58
TOTALS (tpy, mitigated)	46.83	53.62	497.65	0.35	27.41
SUM OF AREA AND OPERATIONAL E	MISSION E	ESTIMATES			
	ROG	NOx	CO	SO2	PM10
TOTALS (tpy, unmitigated)	72.57	63.55	562.68	0.42	30.61
TOTALS (tpy, mitigated)	67.82	57.34	505.01	0.38	27.43

Page: 2 02/14/2007 9:43 AM

URBEMIS 2002 For Windows 8.7.0

File Name: H:\ClientData\Castle and Cooke\Gateway Project Madera\GATEWAY AIR STUDY 8-17-06 (distrib Project Name: Gateway Village Operations Project Location: Non-Residential Template On-Road Motor Vehicle Emissions Based on EMFAC2002 version 2.2

DETAIL REPORT (Tons/Year)

AREA SOURCE EMISSION ESTIMATES		-	Unmitigated)		
Source	ROG	иОх	CO	S02	PM10
Natural Gas	0.28	3.63	1.88	0.00	0.01
Hearth	0.00	0.00	0.00	0.00	0.00
Landscaping	0.69	0.09	5.47	0.03	0.02
Consumer Prdcts	16.55	-	-	-	-
Architectural Coatings	3.48	-	-	-	-
TOTALS (tpy, unmitigated)	20.99	3.72	7.35	0.03	0.02
AREA SOURCE EMISSION ESTIMATES	(Tons	per Year,	Mitigated)		
Source	ROG	NOx	CO	SO2	PM10
Natural Gas	0.28	3.63	1.88	0	0.01
Hearth	0.00	0.00	0.00	0.00	0.00
Landscaping	0.69	0.09	5.47	0.03	0.02
Consumer Prdcts	16.55	-	-	-	-
Architectural Coatings	3.48	-	-	-	_
TOTALS (tpy, mitigated)	20.99	3.72	7.35	0.03	0.02

Area Source Mitigation Measures

Page: 3 02/14/2007 9:43 AM

UNMITIGATED OPERATIONAL EMISSIONS

	ROG	NOx	CO	SO2	PM10
Single family housing	21.13	26.13	245.73	0.17	13.62
Apartments low rise	2.35	2.80	26.31	0.02	1.46
Retirement community	1.96	2.09	19.68	0.01	1.09
Elementary school	4.46	2.91	26.78	0.02	1.47
City park	0.19	0.14	1.29	0.00	0.07
Regnl shop. center	12.00	14.57	132.38	0.09	7.32
Goverment office building	9.50	11.19	103.16	0.07	5.55
TOTAL EMISSIONS (tons/yr)	51.58	59.83	555.32	0.39	30.58

Includes correction for passby trips. Does not include double counting adjustment for internal trips.

OPERATIONAL (Vehicle) EMISSION ESTIMATES

Analysis Year: 2010 Season: Annual

EMFAC Version: EMFAC2002 (9/2002)

Summary of Land Uses:

Unit Type	Acreage	Trip	Rate	No. Total Units Trips
Single family housing	516.33	9.57	trips/dwelling unit	1,549.0014,823.93
Apartments low rise	14.38	6.90	trips/dwelling unit	230.00 1,587.00
Retirement community	64.00	3.71	trips/dwelling unit	320.00 1,187.20
Elementary school		1.29	trips/students	1,600.00 2,064.00
City park o		1.59	trips/acres	59.20 94.13
Regnl shop. center		42.94	trips/1000 sq. ft.	261.3611,222.80
Government office building		68.93	trips/1000 sq. ft.	130.68 9,007.77

Sum of Total Trips 39,986.83 Total Vehicle Miles Traveled 221,339.38

Vehicle Assumptions:

Fleet Mix:

Vehicle Type	Percent Type	Non-Catalyst	Catalyst	Diesel
Light Auto	54.70	1.10	98.70	0.20
Light Truck < 3,750 lbs	s 15.20	2.00	96.00	2.00
Light Truck 3,751- 5,75	0 16.20	1.20	98.10	0.70
Med Truck 5,751-8,50	0 7.30	1.40	95.90	2.70
Lite-Heavy 8,501-10,00	0 1.10	0.00	81.80	18.20
Lite-Heavy 10,001-14,00	0.30	0.00	66.70	33.30
Med-Heavy 14,001-33,00	0 1.00	0.00	20.00	80.00
Heavy-Heavy 33,001-60,00	0.90	0.00	11.10	88.90
Line Haul > 60,000 lb	s 0.00	0.00	0.00	100.00
Urban Bus	0.20	0.00	50.00	50.00
Motorcycle	1.60	68.80	31.20	0.00
School Bus	0.10	0.00	0.00	100.00
Motor Home	1.40	7.10	85.70	7.20

	Residential			Commercial		
	Home-	Home-	Home-			
	Work	Shop	Other	Commute	Non-Work	Customer
Urban Trip Length (miles)	10.8	2.0	7.5	9.5	7.4	7.4
Rural Trip Length (miles)	16.8	7.1	7.9	14.7	6.6	6.6
Trip Speeds (mph)	35.0	35.0	35.0	35.0	35.0	35.0
% of Trips - Residential	32.9	18.0	49.1			
% of Trips - Commercial (by land	use)				
Elementary school	-			20.0	10.0	70.0
City park				5.0	2.5	92.5
Regnl shop. center				2.0	1.0	97.0
Goverment office building				10.0	5.0	85.0

MITIGATED OPERATIONAL EMISSIONS

	ROG	NOx	CO	SO2	PM10
Single family housing	19.29	23.60	221.97	0.16	12.30
Apartments low rise	2.08	2.42	22.78	0.02	1.26
Retirement community	1.58	1.57	14.77	0.01	0.82
Elementary school	4.24	2.63	24.19	0.02	1.33
City park	0.18	0.13	1.16	0.00	0.07
Regnl shop. center	10.87	13.16	119.58	0.08	6.61
Goverment office building	8.60	10.11	93.19	0.06	5.01
TOTAL EMISSIONS (tons/yr)	46.83	53.62	497.65	0.35	27.41
PERCENTAGE REDUCTION %	9	10	10	10	10

Includes correction for passby trips. Does not include double counting adjustment for internal trips.

OPERATIONAL (Vehicle) EMISSION ESTIMATES

Analysis Year: 2010 Season: Annual

EMFAC Version: EMFAC2002 (9/2002)

Summary of Land Uses:

Unit Type	Acreage	Trip Rate		No. Units	Total Trips
Single family housing Apartments low rise	516.33 14.38	9.57 trips/dwelli 6.90 trips/dwelli		1,549.0014 230.00 1	
Retirement community	64.00	3.71 trips/dwelli	ng unit	320.00 1	,187.20
Elementary school City park		1.29 trips/studen 1.59 trips/acres	ts	1,600.00 2 59.20	
Regnl shop. center Goverment office building	ı	42.94 trips/1000 s 68.93 trips/1000 s	4	261.3611 130.68 9	

Sum of Total Trips 39,986.83 Total Vehicle Miles Traveled 221,339.38

Vehicle Assumptions:

Fleet Mix:

Vehicle Type	Percent Type	Non-Catalyst	Catalyst	Diesel
Light Auto	54.70	1.10	98.70	0.20
Light Truck < 3,750 lbs	s 15.20	2.00	96.00	2.00
Light Truck 3,751- 5,750	0 16.20	1.20	98.10	0.70
Med Truck 5,751-8,500	7.30	1.40	95.90	2.70
Lite-Heavy 8,501-10,000	0 1.10	0.00	81.80	18.20
Lite-Heavy 10,001-14,000	0.30	0.00	66.70	33.30
Med-Heavy 14,001-33,000	1.00	0.00	20.00	80.00
Heavy-Heavy 33,001-60,000	0.90	0.00	11.10	88.90
Line Haul > 60,000 lbs	s 0.00	0.00	0.00	100.00
Urban Bus	0.20	0.00	50.00	50.00
Motorcycle	1.60	68.80	31.20	0.00
School Bus	0.10	0.00	0.00	100.00
Motor Home	1.40	7.10	85.70	7.20

Traver conditions		Residential			Commercial	L
Urban Trip Length (miles) Rural Trip Length (miles)	16.8	Home- Shop 2.0 7.1	Home- Other 7.5 7.9	Commute 9.5 14.7	Non-Work 7.4 6.6	7.4 6.6
<pre>Trip Speeds (mph) % of Trips - Residential % of Trips - Commercial (</pre>		35.0 18.0	35.0 49.1	35.0	35.0	35.0
Elementary school City park Regnl shop. center Government office building	-	ase,		20.0 5.0 2.0 10.0	10.0 2.5 1.0 5.0	70.0 92.5 97.0 85.0

Page: 5 02/14/2007 9:43 AM

MITIGATION OPTIONS SELECTED

Residential Mitigation Measures

Residential Mix of Uses Mitigation

Percent Reduction in Trips is 7.67% (calculated as a % of 9.57 trips/day) Note that the above percent is applied to a baseline of 9.57 and that product is subtracted from the Unmitigated Trips Inputs Selected:

The number of housing units within a 1/2 mile radius of the project, plus the number of residential units included in the project are 6578. The employment for the study area (within a 1/2 mile radius of the project) is 7894.

Residential Local-Serving Retail Mitigation

Percent Reduction in Trips is 2% (calculated as a % of 9.57 trips/day) Note that the above percent is applied to a baseline of 9.57 and that product is subtracted from the Unmitigated Trips Inputs Selected:

The Presence of Local-Serving Retail checkbox was selected.

Non-Residential Mitigation Measures ______

Non-Residential Mix of Uses Mitigation

Percent Reduction in Trips is 7.67%

Inputs Selected:

The number of housing units within a 1/2 mile radius of the project, plus the number of residential units included in the project are 6578. The employment for the study area (within a 1/2 mile radius of the project) is 7894.

Non-Residential Local-Serving Retail Mitigation

Percent Reduction in Trips is 2%

Inputs Selected:

The Presence of Local-Serving Retail checkbox was selected.

Page: 6 02/14/2007 9:43 AM

Changes made to the default values for Land Use Trip Percentages

Changes made to the default values for Area

The area souce mitigation measure option switch changed from off to on. The natural gas single family usage rate changed from 6665.0 to 4094.1. The natural gas multi-family usage rate changed from 4011.5 to 2288.9. The wood stove percentage changed from 67 to 0. The natural gas fireplace percentage changed from 33 to 100. The landscape year changed from 2006 to 2010. The consumer product ROG pounds per person changed from 0.0171 to 0.0151.

Changes made to the default values for Operations

The mitigation option switch changed from off to on.

The operational emission year changed from 2006 to 2010.

The home based work selection item changed from 8 to 7.

The home based shopping selection item changed from 8 to 7.

The home based shopping urban trip length changed from 7.3 to 2.

The home based other selection item changed from 8 to 7.

The commercial based commute selection item changed from 8 to 7.

The commercial based non-work selection item changed from 8 to 7.

The commercial based customer selection item changed from 8 to 7.

The Res and Non-Res Mix of Uses Mitigation changed from off to on.

The Res and Non-Res Local-Serving Retail Mitigation changed from off to on.

Page: 1 02/14/2007 10:30 AM

URBEMIS 2002 For Windows 8.7.0

File Name: H:\ClientData\Castle and Cooke\Gateway Project Madera\GATEWAY AIR STUDY 8-17-06 (distrib

Project Name:

TOTALS (tpy, unmitigated)
TOTALS (tpy, mitigated)

Gateway Village Operations Non-Residential Template Project Location: Non-Residential Template
On-Road Motor Vehicle Emissions Based on EMFAC2002 version 2.2

SUMMARY REPORT (Tons/Year)

·					
AREA SOURCE EMISSION ESTIMATES					
	ROG	NOx	CO	SO2	PM10
TOTALS (tpy, unmitigated)	20.99	3.72	7.35	0.03	0.02
TOTALS (tpy, mitigated)	20.99	3.72	7.35	0.03	0.02
OPERATIONAL (VEHICLE) EMISSION					
	ROG	NOx	CO	SO2	PM10
TOTALS (tpy, unmitigated)	33.28	36.44	343.31	0.39	30.48
TOTALS (tpy, mitigated)	30.28	32.66	307.65	0.35	27.31
SUM OF AREA AND OPERATIONAL EM	ISSION				
	ROG	xOM	CO	SO2	PM10

54.27

51.28

40.16

36.38

350.66

315.01

0.42

0.38

30.50

27.34

Page: 2 02/14/2007 10:30 AM

URBEMIS 2002 For Windows 8.7.0

H:\ClientData\Castle and Cooke\Gateway Project Madera\GATEWAY AIR STUDY 8-17-06 (distrib Gateway Village Operations Non-Residential Template

File Name: Project Name: Project Location:

On-Road Motor Vehicle Emissions Based on EMFAC2002 version 2.2

DETAIL REPORT (Tons/Year)

AREA SOURCE EMISSION ESTIMATES	(Tons p	er Year,	Unmitigated)		
Source	ROG	NOx	CO	SO2	PM10
Natural Gas	0.28	3.63	1.88	0.00	0.01
Hearth	0.00	0.00	0.00	0.00	0.00
Landscaping	0.69	0.09	5.47	0.03	0.02
Consumer Prdcts	16.55	-	-	-	-
Architectural Coatings	3.48	-	-	-	-
TOTALS (tpy, unmitigated)	20.99	3.72	7.35	0.03	0.02
AREA SOURCE EMISSION ESTIMATES	(Tons pe	er Year,	Mitigated)		
Source	ROG	NOx	CO	SO2	PM10
Natural Gas	0.28	3.63	1.88	0	0.01
**	0.00	0.00	0.00	0.00	0 00
Hearth	0.00	0.00	0.00	0.00	0.00
Hearth Landscaping	0.69	0.00	5.47	0.00	0.00
Landscaping	0.69				

Area Source Mitigation Measures

UNMITIGATED OPERATIONAL EMISSIONS

	ROG	NOx	CO	S02	PM10
Single family housing	13.55	15.88	151.99	0.17	13.58
Apartments low rise	1.52	1.70	16.27	0.02	1.45
Retirement community	1.29	1.27	12.17	0.01	1.09
Elementary school	3.12	1.77	16.55	0.02	1.47
City park	0.13	0.09	0.79	0.00	0.07
Regnl shop. center	7.63	8.89	81.73	0.09	7.29
Goverment office building	6.04	6.84	63.80	0.07	5.53
TOTAL EMISSIONS (tons/yr)	33.28	36.44	343.31	0.39	30.48

Includes correction for passby trips.

Does not include double counting adjustment for internal trips.

OPERATIONAL (Vehicle) EMISSION ESTIMATES

Analysis Year: 2015 Season: Annual

EMFAC Version: EMFAC2002 (9/2002)

Summary of Land Uses:

Unit Type	Acreage	Trip	Rate	No. Units	Total Trips
Single family housing	516.33	9.57	trips/dwelling unit	1,549.0014,	823.93
Apartments low rise	14.38	6.90	trips/dwelling unit	230.00 1,	587.00
Retirement community	64.00	3.71	trips/dwelling unit	320.00 1,	187.20
Elementary school		1.29	trips/students	1,600.00 2,	064.00
City park		1.59	trips/acres	59.20	94.13
Regnl shop. center		42.94	trips/1000 sq. ft.	261.3611,	222.80
Government office building		68.93	trips/1000 sq. ft.	130.68 9,	007.77

Sum of Total Trips 39,986.83
Total Vehicle Miles Traveled 221,339.38

Vehicle Assumptions:

Fleet Mix:

Vehicle Type	Percent Type	Non-Catalyst	Catalyst	Diesel
Light Auto	54.40	0.40	99.40	0.20
Light Truck < 3,750 lbs	s 15.30	0.70	98.00	1.30
Light Truck 3,751- 5,750	16.40	0.60	98.80	0.60
Med Truck 5,751-8,50	7.30	0.00	98.60	1.40
Lite-Heavy 8,501-10,000	0 1.10	0.00	81.80	18.20
Lite-Heavy 10,001-14,000	0.30	0.00	66.70	33.30
Med-Heavy 14,001-33,00	1.00	0.00	20.00	80.00
Heavy-Heavy 33,001-60,000	0.80	0.00	0.00	100.00
Line Haul > 60,000 lb:	0.00	0.00	0.00	100.00
Urban Bus	0.20	0.00	50.00	50.00
Motorcycle	1.60	50.00	50.00	0.00
School Bus	0.10	0.00	0.00	100.00
Motor Home	1.50	0.00	93.30	6.70

		Residential	<u>l</u>		Commercia	1
	Home-	Home-	Home-			
	Work	Shop	Other	Commute	Non-Work	Customer
Urban Trip Length (miles)	10.8	2.0	7.5	9.5	7.4	7.4
Rural Trip Length (miles)	16.8	7.1	7.9	14.7	6.6	6.6
Trip Speeds (mph)	35.0	35.0	35.0	35.0	35.0	35.0
% of Trips - Residential	32.9	18.0	49.1			
% of Trips - Commercial (by land	use)				
Elementary school	27 24114	220,		20.0	10.0	70.0
City park				5.0	2.5	92.5
Regnl shop. center				2.0	1.0	97.0
Goverment office building				10.0	5.0	85.0

Page: 4 02/14/2007 10:30 AM

MITIGATED OPERATIONAL EMISSIONS

	ROG	NOx	CO	SO2	PM10
Single family housing	12.40	14.34	137.30	0.16	12.26
Apartments low rise	1.35	1.47	14.09	0.02	1.26
Retirement community	1.05	0.95	9.14	0.01	0.82
Elementary school	2.98	1.60	14.95	0.02	1.33
City park	0.12	0.08	0.72	0.00	0.07
Regnl shop. center	6.92	8.03	73.82	0.08	6.59
Goverment office building	5.47	6.18	57.64	0.06	4.99
TOTAL EMISSIONS (tons/yr)	30.28	32.66	307.65	0.35	27.31
PERCENTAGE REDUCTION %	9	10	10	10	10

Includes correction for passby trips.

Does not include double counting adjustment for internal trips.

OPERATIONAL (Vehicle) EMISSION ESTIMATES

Analysis Year: 2015 Season: Annual

EMFAC Version: EMFAC2002 (9/2002)

Summary of Land Uses:

Unit Type	Acreage	Trip	Rate	No. Total Units Trips
Single family housing	516.33	9.57	trips/dwelling unit	1,549.0014,823.93
Apartments low rise	14.38	6.90	trips/dwelling unit	230.00 1,587.00
Retirement community	64.00	3.71	trips/dwelling unit	320.00 1,187.20
Elementary school		1.29	trips/students	1,600.00 2,064.00
City park		1.59	trips/acres	59.20 94.13
Regnl shop. center		42.94	trips/1000 sq. ft.	261.3611,222.80
Government office building		68.93	trips/1000 sq. ft.	130.68 9,007.77
•				

Sum of Total Trips 39,986.83
Total Vehicle Miles Traveled 221,339.38

Vehicle Assumptions:

Fleet Mix:

Vehicle Type	Percent Type	Non-Catalyst	Catalyst	Diesel
Light Auto	54.40	0.40	99.40	0.20
Light Truck < 3,750 lbs	s 15.30	0.70	98.00	1.30
Light Truck 3,751- 5,75	0 16.40	0.60	98.80	0.60
Med Truck 5,751-8,50	7.30	0.00	98.60	1.40
Lite-Heavy 8,501-10,00	1.10	0.00	81.80	18.20
Lite-Heavy 10,001-14,00	0.30	0.00	66.70	33.30
Med-Heavy 14,001-33,00	1.00	0.00	20.00	80.00
Heavy-Heavy 33,001-60,00	0.80	0.00	0.00	100.00
Line Haul > 60,000 lb:	s 0.00	0.00	0.00	100.00
Urban Bus	0.20	0.00	50.00	50.00
Motorcycle	1.60	50.00	50.00	0.00
School Bus	0.10	0.00	0.00	100.00
Motor Home	1.50	0.00	93.30	6.70

		Residential			Commercial	L
	Home-	Home-	Home-			
	Work	Shop	Other	Commute	Non-Work	Customer
Urban Trip Length (miles)	10.8	2.0	7.5	9.5	7.4	7.4
Rural Trip Length (miles)	16.8	7.1	7.9	14.7	6.6	6.6
Trip Speeds (mph)	35.0	35.0	35.0	35.0	35.0	35.0
% of Trips - Residential	32.9	18.0	49.1			
% of Trips - Commercial (Elementary school City park Regnl shop. center Government office building	by land	use)		20.0 5.0 2.0 10.0	10.0 2.5 1.0 5.0	70.0 92.5 97.0 85.0

Page: 5 02/14/2007 10:30 AM

MITIGATION OPTIONS SELECTED

Residential Mitigation Measures

Residential Mix of Uses Mitigation

Percent Reduction in Trips is 7.67% (calculated as a % of 9.57 trips/day)
Note that the above percent is applied to a baseline of 9.57 and that product is subtracted from the Unmitigated Trips

Inputs Selected:

The number of housing units within a 1/2 mile radius of the project, plus the number of residential units included in the project are 6578.

The employment for the study area (within a 1/2 mile radius of the project) is 7894.

Residential Local-Serving Retail Mitigation

Percent Reduction in Trips is 2% (calculated as a % of 9.57 trips/day)

Note that the above percent is applied to a baseline of 9.57 and that product is subtracted from the Unmitigated Trips
Inputs Selected:

The Presence of Local-Serving Retail checkbox was selected.

Non-Residential Mitigation Measures

Non-Residential Mix of Uses Mitigation

Percent Reduction in Trips is 7.67%

Inputs Selected:

The number of housing units within a 1/2 mile radius of the project, plus the number of residential units included in the project are 6578.

The employment for the study area (within a 1/2 mile radius of the project) is 7894.

Non-Residential Local-Serving Retail Mitigation

Percent Reduction in Trips is 2%

Inputs Selected:

The Presence of Local-Serving Retail checkbox was selected.

```
Page: 6
02/14/2007 10:30 AM
```

Changes made to the default values for Land Use Trip Percentages

Changes made to the default values for Area

The area souce mitigation measure option switch changed from off to on. The natural gas single family usage rate changed from 6665.0 to 4094.1. The natural gas multi-family usage rate changed from 4011.5 to 2288.9. The wood stove percentage changed from 67 to 0. The natural gas fireplace percentage changed from 33 to 100. The landscape year changed from 2006 to 2015.

The consumer product ROG pounds per person changed from 0.0171 to 0.0151.

Changes made to the default values for Operations

The mitigation option switch changed from off to on.
The operational emission year changed from 2006 to 2015.
The home based work selection item changed from 8 to 7.
The home based shopping selection item changed from 8 to 7.
The home based shopping urban trip length changed from 7.3 to 2.
The home based other selection item changed from 8 to 7.
The commercial based commute selection item changed from 8 to 7.
The commercial based non-work selection item changed from 8 to 7.
The commercial based customer selection item changed from 8 to 7.
The Res and Non-Res Mix of Uses Mitigation changed from off to on.
The Res and Non-Res Local-Serving Retail Mitigation changed from off to on.

Page: 1

02/14/2007 9:48 AM

URBEMIS 2002 For Windows 8.7.0

H:\ClientData\Castle and Cooke\Gateway Project Madera\GATEWAY AIR STUDY 8-17-06 (distrib File Name:

Gateway Village Operations Non-Residential Template Project Name: Project Location:

On-Road Motor Vehicle Emissions Based on EMFAC2002 version 2.2

SUMMARY REPORT

(Tons/Year)

AREA SOURCE EMISSION ESTIMATES					
	ROG	NOx	CO	SO2	PM10
TOTALS (tpy, unmitigated)	25.69	4.55	8.96	0.04	0.03
TOTALS (tpy, mitigated)	25.69	4.55	8.96	0.04	0.03
OPERATIONAL (VEHICLE) EMISSION	ESTIMA	TES			
	ROG	NOx	CO	SO2	PM10
TOTALS (tpy, unmitigated)	63.18	73.86	685.27	0.48	37.75
TOTALS (tpy, mitigated)	57.32	66.20	614.11	0.43	33.82
SUM OF AREA AND OPERATIONAL EM	ISSION	ESTIMATES			
	ROG	NOx	CO	SO2	PM10
TOTALS (tpy, unmitigated)	88.87	78.41	694.22	0.52	37.78
TOTALS (tpy, mitigated)	83.00	70.75	623.07	0.47	33.85

Page: 2 02/14/2007 9:48 AM

URBEMIS 2002 For Windows 8.7.0

H:\ClientData\Castle and Cooke\Gateway Project Madera\GATEWAY AIR STUDY 8-17-06 (distrib File Name:

Project Name: Gateway Village Operations Non-Residential Template Project Name: Gateway Village Operations
Project Location: Non-Residential Template
On-Road Motor Vehicle Emissions Based on EMFAC2002 version 2.2

DETAIL REPORT (Tons/Year)

AREA SOURCE EMISSION ESTIMATES	(Tons per	Year,	Unmitigated)		
Source	ROG	NOx	CO	S02	PM10
Natural Gas	0.34	4.45	2.31	0.00	0.01
Hearth	0.00	0.00	0.00	0.00	0.00
Landscaping	0.83	0.11	6.65	0.04	0.02
Consumer Prdcts	20.25	-	-	-	-
Architectural Coatings	4.27	-	-	-	-
TOTALS (tpy, unmitigated)	25.69	4.55	8.96	0.04	0.03
AREA SOURCE EMISSION ESTIMATES	(Tons per	Year,	Mitigated)		
Source	ROG	NOx	CO	SO2	PM10
Natural Gas	0.34	4.45	2.31	0	0.01
Hearth	0.00	0.00	0.00	0.00	0.00
Landscaping	0.83	0.11	6.65	0.04	0.02
Consumer Prdcts	20.25	-	-	-	-
Architectural Coatings	4.27	-	-	-	-
TOTALS (tpy, mitigated)	25.69	4.55	8.96	0.04	0.03

Area Source Mitigation Measures

Page: 3 02/14/2007 9:48 AM

UNMITIGATED OPERATIONAL EMISSIONS

	ROG	NOx	CO	SO2	PM10
Single family housing	25.89	32.02	301.09	0.21	16.69
Apartments low rise	2.76	3.28	30.88	0.02	1.71
Retirement community	2.45	2.62	24.60	0.02	1.36
Elementary school	4.46	2.91	26.78	0.02	1.47
City park	0.23	0.18	1.61	0.00	0.09
Regnl shop. center	16.00	19.43	176.51	0.12	9.76
Goverment office building	11.40	13.43	123.79	0.08	6.66
TOTAL EMISSIONS (tons/yr)	63.18	73.86	685.27	0.48	37.75

Includes correction for passby trips. Does not include double counting adjustment for internal trips.

OPERATIONAL (Vehicle) EMISSION ESTIMATES

Analysis Year: 2010 Season: Annual

EMFAC Version: EMFAC2002 (9/2002)

Summary of Land Uses:

Unit Type	Acreage	Trip Rate	No. Total Units Trips
Single family housing	632.67	9.57 trips/dwelling unit	1,898.0018,163.86
Apartments low rise	16.88	6.90 trips/dwelling unit	270.00 1,863.00
Retirement community	80.00	3.71 trips/dwelling unit	400.00 1,484.00
Elementary school		1.29 trips/students	1,600.00 2,064.00
City park		1.59 trips/acres	74.00 117.66
Regnl shop. center		42.94 trips/1000 sq. ft.	348.4814,963.73
Government office building		68.93 trips/1000 sq. ft.	156.8210,809.60

Sum of Total Trips 49,465.85 Total Vehicle Miles Traveled 273,180.45

Vehicle Assumptions:

Fleet Mix:

Vehicle Type	Percent Type	Non-Catalyst	Catalyst	Diesel
Light Auto	54.70	1.10	98.70	0.20
Light Truck < 3,750 lbs	15.20	2.00	96.00	2.00
Light Truck 3,751- 5,750	16.20	1.20	98.10	0.70
Med Truck 5,751-8,500	7.30	1.40	95.90	2.70
Lite-Heavy 8,501-10,000	1.10	0.00	81.80	18.20
Lite-Heavy 10,001-14,000	0.30	0.00	66.70	33.30
Med-Heavy 14,001-33,000	1.00	0.00	20.00	80.00
Heavy-Heavy 33,001-60,000	0.90	0.00	11.10	88.90
Line Haul > 60,000 lbs	0.00	0.00	0.00	100.00
Urban Bus	0.20	0.00	50.00	50.00
Motorcycle	1.60	68.80	31.20	0.00
School Bus	0.10	0.00	0.00	100.00
Motor Home	1.40	7.10	85.70	7.20

		Residential			Commercial	L
	Home-	Home-	Home-			
	Work	Shop	Other	Commute	Non-Work	Customer
Urban Trip Length (miles)	10.8	2.0	7.5	9.5	7.4	7.4
Rural Trip Length (miles)	16.8	7.1	7.9	14.7	6.6	6.6
Trip Speeds (mph)	35.0	35.0	35.0	35.0	35.0	35.0
% of Trips - Residential	32.9	18.0	49.1			
% of Trips - Commercial (by land	use)				
Elementary school				20.0	10.0	70.0
City park				5.0	2.5	92.5
Regnl shop. center				2.0	1.0	97.0
Government office building				10.0	5.0	85.0

MITIGATED OPERATIONAL EMISSIONS

	ROG	NOx	CO	SO2	PM10
Single family housing	23.63	28.92	271.99	0.19	15.08
Apartments low rise	2.44	2.84	26.74	0.02	1.48
Retirement community	1.97	1.96	18.47	0.01	1.02
Elementary school	4.24	2.63	24.19	0.02	1.33
City park	0.22	0.16	1.45	0.00	0.08
Regnl shop. center	14.50	17.55	159.44	0.11	8.81
Goverment office building	10.32	12.13	111.83	0.08	6.01
TOTAL EMISSIONS (tons/yr)	57.32	66.20	614.11	0.43	33.82
PERCENTAGE REDUCTION %	9	10	10	10	10

Includes correction for passby trips.

Does not include double counting adjustment for internal trips.

OPERATIONAL (Vehicle) EMISSION ESTIMATES

Analysis Year: 2010 Season: Annual

EMFAC Version: EMFAC2002 (9/2002)

Summary of Land Uses:

Unit Type	Acreage	Trip I	Rate	No. Units	Total Trips
Single family housing	632.67	9.57 t	trips/dwelling unit	1,898.0018	,163.86
Apartments low rise	16.88	6.90 t	trips/dwelling unit	270.00 1	,863.00
Retirement community	80.00	3.71 t	trips/dwelling unit	400.00 1	,484.00
Elementary school		1.29 t	trips/students	1,600.00 2	,064.00
City park		1.59 t	trips/acres	74.00	117.66
Regnl shop. center		42.94 t	trips/1000 sq. ft.	348.4814	,963.73
Government office building		68.93 t	trips/1000 sq. ft.	156.8210	,809.60

Sum of Total Trips 49,465.85
Total Vehicle Miles Traveled 273,180.45

Vehicle Assumptions:

Fleet Mix:

Vehicle Type	Percent Type	Non-Catalyst	Catalyst	Diesel
Light Auto	54.70	1.10	98.70	0.20
Light Truck < 3,750 lbs	s 15.20	2.00	96.00	2.00
Light Truck 3,751- 5,75	0 16.20	1.20	98.10	0.70
Med Truck 5,751-8,50	0 7.30	1.40	95.90	2.70
Lite-Heavy 8,501-10,00	0 1.10	0.00	81.80	18.20
Lite-Heavy 10,001-14,00	0.30	0.00	66.70	33.30
Med-Heavy 14,001-33,00	0 1.00	0.00	20.00	80.00
Heavy-Heavy 33,001-60,00	0.90	0.00	11.10	88.90
Line Haul > 60,000 lb:	s 0.00	0.00	0.00	100.00
Urban Bus	0.20	0.00	50.00	50.00
Motorcycle	1.60	68.80	31.20	0.00
School Bus	0.10	0.00	0.00	100.00
Motor Home	1.40	7.10	85.70	7.20

		Residential	L		Commercial	l
	Home-	Home-	Home-			
	Work	Shop	Other	Commute	Non-Work	Customer
Urban Trip Length (miles)	10.8	2.0	7.5	9.5	7.4	7.4
Rural Trip Length (miles)	16.8	7.1	7.9	14.7	6.6	6.6
Trip Speeds (mph)	35.0	35.0	35.0	35.0	35.0	35.0
% of Trips - Residential	32.9	18.0	49.1			
% of Trips - Commercial (by land	use)				
Elementary school	-			20.0	10.0	70.0
City park				5.0	2.5	92.5
Regnl shop. center				2.0	1.0	97.0
Government office building				10.0	5.0	85.0

Page: 5 02/14/2007 9:48 AM

MITIGATION OPTIONS SELECTED

Residential Mitigation Measures

Residential Mix of Uses Mitigation

Percent Reduction in Trips is 7.67% (calculated as a % of 9.57 trips/day)
Note that the above percent is applied to a baseline of 9.57 and that product is subtracted from the Unmitigated Trips
Inputs Selected:

The number of housing units within a 1/2 mile radius of the project, plus the number of residential units included in the project are 6578. The employment for the study area (within a 1/2 mile radius of the project) is 7894.

Residential Local-Serving Retail Mitigation

Percent Reduction in Trips is 2% (calculated as a % of 9.57 trips/day)
Note that the above percent is applied to a baseline of 9.57 and that product is subtracted from the Unmitigated Trips
Inputs Selected:

The Presence of Local-Serving Retail checkbox was selected.

Non-Residential Mitigation Measures

Non-Residential Mix of Uses Mitigation

Percent Reduction in Trips is 7.67%

Inputs Selected:

The number of housing units within a 1/2 mile radius of the project, plus the number of residential units included in the project are 6578.

The employment for the study area (within a 1/2 mile radius of the project) is 7894.

Non-Residential Local-Serving Retail Mitigation

Percent Reduction in Trips is 2%

Inputs Selected:

The Presence of Local-Serving Retail checkbox was selected.

Page: 6 02/14/2007 9:48 AM

Changes made to the default values for Land Use Trip Percentages

Changes made to the default values for Area

The area souce mitigation measure option switch changed from off to on. The natural gas single family usage rate changed from 6665.0 to 4094.1. The natural gas multi-family usage rate changed from 4011.5 to 2288.9. The wood stove percentage changed from 67 to 0. The natural gas fireplace percentage changed from 33 to 100. The landscape year changed from 2006 to 2010.

The consumer product ROG pounds per person changed from 0.0171 to 0.0151.

Changes made to the default values for Operations

The mitigation option switch changed from off to on.
The operational emission year changed from 2006 to 2010.
The home based work selection item changed from 8 to 7.
The home based shopping selection item changed from 8 to 7.
The home based shopping urban trip length changed from 7.3 to 2.
The home based other selection item changed from 8 to 7.
The commercial based commute selection item changed from 8 to 7.
The commercial based non-work selection item changed from 8 to 7.
The commercial based customer selection item changed from 8 to 7.
The Res and Non-Res Mix of Uses Mitigation changed from off to on.
The Res and Non-Res Local-Serving Retail Mitigation changed from off to on.

Page: 1 02/14/2007 9:49 AM

URBEMIS 2002 For Windows 8.7.0

H:\ClientData\Castle and Cooke\Gateway Project Madera\GATEWAY AIR STUDY 8-17-06 (distrib Gateway Village Operations Non-Residential Template File Name:

Project Name:

Project Location:

On-Road Motor Vehicle Emissions Based on EMFAC2002 version 2.2

SUMMARY REPORT

(Tons/Year)

AREA SOURCE EMISSION ESTIMATE	_				
	ROG	NOx	CO	SO2	P M1 0
TOTALS (tpy, unmitigated)	25.69	4.55	8.96	0.04	0.03
TOTALS (tpy, mitigated)	25.69	4.55	8.96	0.04	0.03
OPERATIONAL (VEHICLE) EMISSION	N ESTIMAT	ES			
	ROG	NOx	CO	SO2	PM10
TOTALS (tpy, unmitigated)	40.70	44.99	423.63	0.48	37.62
TOTALS (tpy, mitigated)	37.00	40.32	379.64	0.43	33.71
OF ANY AND OND STREET	MICOTON E	COT MA MERC			
SUM OF AREA AND OPERATIONAL E		STIMATES			
	ROG	NOx	CO	SO2	PM10
TOTALS (tpy, unmitigated)	66.38	49.54	432.59	0.52	37.65
TOTALS (tpy, mitigated)	62.69	44.88	388.60	0.47	33.74

Page: 2 02/14/2007 9:49 AM

URBEMIS 2002 For Windows 8.7.0

H:\ClientData\Castle and Cooke\Gateway Project Madera\GATEWAY AIR STUDY 8-17-06 (distrib Gateway Village Operations Non-Residential Template File Name:

Project Name: Project Location: On-Road Motor Vehicle Emissions Based on EMFAC2002 version 2.2

> DETAIL REPORT (Tons/Year)

AREA SOURCE EMISSION ESTIMATES	_		Unmitigated)		
Source	ROG	NOx	CO	S02	PM10
Natural Gas	0.34	4.45	2.31	0.00	0.01
Hearth	0.00	0.00	0.00	0.00	0.00
Landscaping	0.83	0.11	6.65	0.04	0.02
Consumer Prdcts	20.25	-	-	-	-
Architectural Coatings	4.27	_	-	-	_
TOTALS (tpy, unmitigated)	25.69	4.55	8.96	0.04	0.03
AREA SOURCE EMISSION ESTIMATES	(Tons p	er Year,	Mitigated)		
AREA SOURCE EMISSION ESTIMATES Source	(Tons p	er Year, NOx	Mitigated) CO	S02	PM10
	_			SO2 0	PM10
Source	ROG	NOx	CO		
Source Natural Gas	ROG 0.34	NOx 4.45	CO 2.31	0	0.01
Source Natural Gas Hearth	ROG 0.34 0.00	NOx 4.45 0.00	CO 2.31 0.00	0.00	0.01
Source Natural Gas Hearth Landscaping	ROG 0.34 0.00 0.83	NOx 4.45 0.00	CO 2.31 0.00	0 0.00 0.04	0.01 0.00 0.02

Area Source Mitigation Measures

UNMITIGATED OPERATIONAL EMISSIONS

	ROG	NOx	CO	SO2	PM10
Single family housing	16.60	19.46	186.23	0.21	16.64
Apartments low rise	1.78	2.00	19.10	0.02	1.71
Retirement community	1.61	1.59	15.22	0.02	1.36
Elementary school	3.12	1.77	16.55	0.02	1.47
City park	0.16	0.11	0.99	0.00	0.09
Regnl shop. center	10.17	11.86	108.97	0.12	9.72
Goverment office building	7.25	8.21	76.57	0.08	6.63
TOTAL EMISSIONS (tons/yr)	40.70	44.99	423.63	0.48	37.62

Includes correction for passby trips. Does not include double counting adjustment for internal trips.

OPERATIONAL (Vehicle) EMISSION ESTIMATES

Season: Annual Analysis Year: 2015

EMFAC Version: EMFAC2002 (9/2002)

Summary of Land Uses:

Unit Type	Acreage	Trip	Rate	No. Units	Total Trips
Single family housing	632.67	9.57	trips/dwelling unit	1,898.0018,	163.86
Apartments low rise	16.88	6.90	trips/dwelling unit	270.00 1,	863.00
Retirement community	80.00	3.71	trips/dwelling unit	400.00 1,	484.00
Elementary school		1.29	trips/students	1,600.00 2,	064.00
City park		1.59	trips/acres	74.00	117.66
Regnl shop. center		42.94	trips/1000 sq. ft.	348.4814,	963.73
Government office building		68.93	trips/1000 sq. ft.	156.8210,	809.60

Sum of Total Trips 49,465.85
Total Vehicle Miles Traveled 273,180.45

Vehicle Assumptions:

Fleet Mix:

Vehicle Type	Percent Type	Non-Catalyst	Catalyst	Diesel
Light Auto	54.40	0.40	99.40	0.20
Light Truck < 3,750 lbs	15.30	0.70	98.00	1.30
Light Truck 3,751- 5,750	16.40	0.60	98.80	0.60
Med Truck 5,751-8,500	7.30	0.00	98.60	1.40
Lite-Heavy 8,501-10,000	1.10	0.00	81.80	18.20
Lite-Heavy 10,001-14,000	0.30	0.00	66.70	33.30
Med-Heavy 14,001-33,000	1.00	0.00	20.00	80.00
Heavy-Heavy 33,001-60,000	0.80	0.00	0.00	100.00
Line Haul > 60,000 lbs	0.00	0.00	0.00	100.00
Urban Bus	0.20	0.00	50.00	50.00
Motorcycle	1.60	50.00	50.00	0.00
School Bus	0.10	0.00	0.00	100.00
Motor Home	1.50	0.00	93.30	6.70

	Residential			Commercial		
	Home-	Home-	Home-			
	Work	Shop	Other	Commute	Non-Work	Customer
Urban Trip Length (miles)	10.8	2.0	7.5	9.5	7.4	7.4
Rural Trip Length (miles)	16.8	7.1	7.9	14.7	6.6	6.6
Trip Speeds (mph)	35.0	35.0	35.0	35.0	35.0	35.0
% of Trips - Residential	32.9	18.0	49.1			
% of Trips - Commercial (by land	use)				
Elementary school	•	•		20.0	10.0	70.0
City park				5.0	2.5	92.5
Regnl shop. center				2.0	1.0	97.0
Government office building				10.0	5.0	85.0

Page: 4 02/14/2007 9:49 AM

MITIGATED OPERATIONAL EMISSIONS

	ROG	NOx	CO	S02	PM10
Single family housing	15.19	17.58	168.23	0.19	15.03
Apartments low rise	1.58	1.73	16.54	0.02	1.48
Retirement community	1.31	1.19	11.42	0.01	1.02
Elementary school	2.98	1.60	14.95	0.02	1.33
City park	0.15	0.10	0.90	0.00	0.08
Regnl shop. center	9.22	10.71	98.43	0.11	8.78
Goverment office building	6.56	7.41	69.17	0.08	5.99
TOTAL EMISSIONS (tons/yr)	37.00	40.32	379.64	0.43	33.71
PERCENTAGE REDUCTION %	9	10	10	10	10

Includes correction for passby trips.

Does not include double counting adjustment for internal trips.

OPERATIONAL (Vehicle) EMISSION ESTIMATES

Analysis Year: 2015 Season: Annual

EMFAC Version: EMFAC2002 (9/2002)

Summary of Land Uses:

Unit Type	Acreage	Trip Rate	No. Total Units Trips
Single family housing Apartments low rise Retirement community Elementary school City park	632.67 16.88 80.00	9.57 trips/dwelling un 6.90 trips/dwelling un 3.71 trips/dwelling un 1.29 trips/students 1.59 trips/acres	it 270.00 1,863.00 it 400.00 1,484.00 1,600.00 2,064.00 74.00 117.66
Regnl shop. center Goverment office building	ſ	42.94 trips/1000 sq. ft 68.93 trips/1000 sq. ft	

Sum of Total Trips 49,465.85
Total Vehicle Miles Traveled 273,180.45

Vehicle Assumptions:

Fleet Mix:

Vehicle Type	Percent Type	Non-Catalyst	Catalyst	Diesel
Light Auto	54.40	0.40	99.40	0.20
Light Truck < 3,750 lbs	15.30	0.70	98.00	1.30
Light Truck 3,751- 5,750	16.40	0.60	98.80	0.60
Med Truck 5,751-8,500	7.30	0.00	98.60	1.40
Lite-Heavy 8,501-10,000	1.10	0.00	81.80	18.20
Lite-Heavy 10,001-14,000	0.30	0.00	66.70	33.30
Med-Heavy 14,001-33,000	1.00	0.00	20.00	80.00
Heavy-Heavy 33,001-60,000	0.80	0.00	0.00	100.00
Line Haul > 60,000 lbs	0.00	0.00	0.00	100.00
Urban Bus	0.20	0.00	50.00	50.00
Motorcycle	1.60	50.00	50.00	0.00
School Bus	0.10	0.00	0.00	100.00
Motor Home	1.50	0.00	93.30	6.70

	Residential			Commercial			
	Home-	Home-	Home-				
	Work	Shop	Other	Commute	Non-Work	Customer	
Urban Trip Length (miles)	10.8	2.0	7.5	9.5	7.4	7.4	
Rural Trip Length (miles)	16.8	7.1	7.9	14.7	6.6	6.6	
Trip Speeds (mph)	35.0	35.0	35.0	35.0	35.0	35.0	
% of Trips - Residential	32.9	18.0	49.1				
% of Trips - Commercial () Elementary school City park Regnl shop. center Government office building	-	use)		20.0 5.0 2.0 10.0	10.0 2.5 1.0 5.0	70.0 92.5 97.0 85.0	

Page: 5 02/14/2007 9:49 AM

MITIGATION OPTIONS SELECTED

Residential Mitigation Measures

Residential Mix of Uses Mitigation

Percent Reduction in Trips is 7.67% (calculated as a % of 9.57 trips/day) Note that the above percent is applied to a baseline of 9.57 and that product is subtracted from the Unmitigated Trips

Inputs Selected:

The number of housing units within a 1/2 mile radius of the project, plus the number of residential units included in the project are 6578. The employment for the study area (within a 1/2 mile radius of the project) is 7894.

Residential Local-Serving Retail Mitigation

Percent Reduction in Trips is 2% (calculated as a % of 9.57 trips/day) Note that the above percent is applied to a baseline of 9.57 and that product is subtracted from the Unmitigated Trips Inputs Selected:

The Presence of Local-Serving Retail checkbox was selected.

Non-Residential Mitigation Measures

Non-Residential Mix of Uses Mitigation

Percent Reduction in Trips is 7.67%

Inputs Selected:

The number of housing units within a 1/2 mile radius of the project, plus the number of residential units included in the project are 6578. The employment for the study area (within a 1/2 mile radius of the project) is 7894.

Non-Residential Local-Serving Retail Mitigation

Percent Reduction in Trips is 2%

Inputs Selected:

The Presence of Local-Serving Retail checkbox was selected.

```
Page: 6
02/14/2007 9:49 AM
```

Changes made to the default values for Land Use Trip Percentages

Changes made to the default values for Area

The area souce mitigation measure option switch changed from off to on. The natural gas single family usage rate changed from 6665.0 to 4094.1. The natural gas multi-family usage rate changed from 4011.5 to 2288.9. The wood stove percentage changed from 67 to 0. The natural gas fireplace percentage changed from 33 to 100. The landscape year changed from 2006 to 2015. The consumer product ROG pounds per person changed from 0.0171 to 0.0151.

Changes made to the default values for Operations

The mitigation option switch changed from off to on.
The operational emission year changed from 2006 to 2015.
The home based work selection item changed from 8 to 7.
The home based shopping selection item changed from 8 to 7.
The home based shopping urban trip length changed from 7.3 to 2.
The home based other selection item changed from 8 to 7.
The commercial based commute selection item changed from 8 to 7.
The commercial based non-work selection item changed from 8 to 7.
The commercial based customer selection item changed from 8 to 7.
The Res and Non-Res Mix of Uses Mitigation changed from off to on.
The Res and Non-Res Local-Serving Retail Mitigation changed from off to on.

Page: 1 02/14/2007 9:50 AM

URBEMIS 2002 For Windows 8.7.0

File Name: Project Name: H:\ClientData\Castle and Cooke\Gateway Project Madera\GATEWAY AIR STUDY 8-17-06 (distrib

Gateway Village Operations Non-Residential Template

Project Location:

On-Road Motor Vehicle Emissions Based on EMFAC2002 version 2.2

SUMMARY REPORT

(Tons/Year)

ROG NOX CO SO2	PM10
100 101 00 002	
TOTALS (tpy, unmitigated) 31.33 5.48 10.60 0.05	0.04
TOTALS (tpy, mitigated) 31.33 5.48 10.60 0.05	.0.04
OPERATIONAL (VEHICLE) EMISSION ESTIMATES	
ROG NOX CO SO2	PM10
TOTALS (tpy, unmitigated) 75.90 89.22 827.74 0.58	45.60
TOTALS (tpy, mitigated) 68.79 79.93 741.42 0.52	40.84
SUM OF AREA AND OPERATIONAL EMISSION ESTIMATES	
ROG NOX CO SO2	PM10
TOTALS (tpy, unmitigated) 107.23 94.70 838.34 0.63	45.64
TOTALS (tpy, mitigated) 100.12 85.40 752.01 0.57	40.88

Page: 2 02/14/2007 9:50 AM

URBEMIS 2002 For Windows 8.7.0

H:\ClientData\Castle and Cooke\Gateway Project Madera\GATEWAY AIR STUDY 8-17-06 (distrib Gateway Village Operations Non-Residential Template

File Name: Project Name: Project Location:

On-Road Motor Vehicle Emissions Based on EMFAC2002 version 2.2

DETAIL REPORT (Tons/Year)

AREA SOURCE EMISSION ESTIMATES Source Natural Gas Hearth Landscaping Consumer Prdcts Architectural Coatings	(Tons per ROG 0.41 0.00 0.98 24.81 5.13	Per Year, NOX 5.35 0.00 0.13	Unmitigated) CO 2.77 0.00 7.83	SO2 0.00 0.00 0.05	PM10 0.01 0.00 0.03
TOTALS (tpy, unmitigated)	31.33	5.48	10.60	0.05	0.04
AREA SOURCE EMISSION ESTIMATES Source	(Tons pe	er Year, NOx	Mitigated) CO	SO2	PM10
Natural Gas	0.41	5.35	2.77	0	0.01
Hearth	0.00	0.00	0.00	0.00	0.00
Landscaping	0.98	0.13	7.83	0.05	0.03
Consumer Prdcts	24.81	-	-	-	-
Architectural Coatings	5.13	-	~	-	-
TOTALS (tpy, mitigated)	31.33	5.48	10.60	0.05	0.04

Area Source Mitigation Measures

UNMITIGATED OPERATIONAL EMISSIONS

	ROG	NOx	CO	SO2	PM10
Single family housing	30.65	37.90	356.46	0.25	19.76
Apartments low rise	4.29	5.11	48.04	0.03	2.66
Retirement community	2.94	3.14	29.52	0.02	1.64
Elementary school	4.46	2.91	26.78	0.02	1.47
City park	0.27	0.21	1.89	0.00	0.11
Regnl shop. center	20.00	24.28	220.63	0.15	12.20
Goverment office building	13.30	15.67	144.42	0.10	7.77
TOTAL EMISSIONS (tons/yr)	75.90	89.22	827.74	0.58	45.60

Includes correction for passby trips.

Does not include double counting adjustment for internal trips.

OPERATIONAL (Vehicle) EMISSION ESTIMATES

Analysis Year: 2010 Season: Annual

EMFAC Version: EMFAC2002 (9/2002)

Summary of Land Uses:

Un	it Type	Acreage	Trip	Rate	No. Total Units Trips
Si	ngle family housing	749.00	9.57	trips/dwelling un	it 2,247.0021,503.79
Ap.	artments low rise	26.25	6.90	trips/dwelling un	it 420.00 2,898.00
Re	tirement community	96.00	3.71	trips/dwelling un	it 480.00 1,780.80
El	ementary school		1.29	trips/students	1,600.00 2,064.00
Ci	ty park		1.59	trips/acres	86.80 138.01
Re	gnl shop. center		42.94	trips/1000 sq. ft	. 435.6018,704.66
Go:	verment office building		68.93	trips/1000 sq. ft	. 182.9512,610.74

Sum of Total Trips 59,700.01
Total Vehicle Miles Traveled 330,047.73

Vehicle Assumptions:

Fleet Mix:

Vehicle Type	Percent Type	Non-Catalyst	Catalyst	Diesel
Light Auto	54.70	1.10	98.70	0.20
Light Truck < 3,750 lbs	3 15.20	2.00	96.00	2.00
Light Truck 3,751- 5,750	16.20	1.20	98.10	0.70
Med Truck 5,751-8,500	7.30	1.40	95.90	2.70
Lite-Heavy 8,501-10,000	1.10	0.00	81.80	18.20
Lite-Heavy 10,001-14,000	0.30	0.00	66.70	33.30
Med-Heavy 14,001-33,000	1.00	0.00	20.00	80.00
Heavy-Heavy 33,001-60,000	0.90	0.00	11.10	88.90
Line Haul > 60,000 lbs	0.00	0.00	0.00	100.00
Urban Bus	0.20	0.00	50.00	50.00
Motorcycle	1.60	68.80	31.20	0.00
School Bus	0.10	0.00	0.00	100.00
Motor Home	1.40	7.10	85.70	7.20

	Residential			Commercial		
	Home- Work	Home- Shop	Home- Other	Commute	Non-Work	Customer
Urban Trip Length (miles)	10.8	2.0	7.5	9.5	7.4	7.4
Rural Trip Length (miles)	16.8	7.1	7.9	14.7	6.6	6.6
Trip Speeds (mph)	35.0	35.0	35.0	35.0	35.0	35.0
% of Trips - Residential	32.9	18.0	49.1			
% of Trips - Commercial (by land	use)				
Elementary school				20.0	10.0	70.0
City park				5.0	2.5	92.5
Regnl shop. center				2.0	1.0	97.0
Goverment office building				10.0	5.0	85.0

Page: 4 02/14/2007 9:50 AM

MITIGATED OPERATIONAL EMISSIONS

	ROG	NOx	CO	SO2	PM10
Single family housing	27.98	34.24	322.00	0.23	17.85
Apartments low rise	3.79	4.42	41.60	0.03	2.31
Retirement community	2.37	2.36	22.16	0.02	1.23
Elementary school	4.24	2.63	24.19	0.02	1.33
City park	0.26	0.19	1.70	0.00	0.10
Regnl shop. center	18.12	21.94	199.30	0.14	11.02
Government office building	12.04	14.16	130.46	0.09	7.02
TOTAL EMISSIONS (tons/yr) PERCENTAGE REDUCTION %	68.79 9	79.93 10	741.42 10	0.52 10	40.84 10

Includes correction for passby trips. Does not include double counting adjustment for internal trips.

OPERATIONAL (Vehicle) EMISSION ESTIMATES

Analysis Year: 2010 Season: Annual

EMFAC Version: EMFAC2002 (9/2002)

Summary of Land Uses:

Unit Type	Acreage	Trip	Rate	No. Units	Total Trips
Single family housing	749.00	9.57	trips/dwelling unit	2,247.0021	,503.79
Apartments low rise	26.25	6.90	trips/dwelling unit	420.00 2	,898.00
Retirement community	96.00	3.71	trips/dwelling unit	480.00 1	,780.80
Elementary school		1.29	trips/students	1,600.00 2	,064.00
City park		1.59	trips/acres	86.80	138.01
Regnl shop. center		42.94	trips/1000 sq. ft.	435.6018	,704.66
Government office building		68.93	trips/1000 sq. ft.	182.9512	,610.74

Sum of Total Trips 59,700.01 Total Vehicle Miles Traveled 330,047.73

Vehicle Assumptions:

Fleet Mix:

Vehicle Type	Percent Type	Non-Catalyst	Catalyst	Diesel
Light Auto	54.70	1.10	98.70	0.20
Light Truck < 3,750 lb	s 15.20	2.00	96.00	2.00
Light Truck 3,751- 5,75	0 16.20	1.20	98.10	0.70
Med Truck 5,751- 8,50	0 7.30	1.40	95.90	2.70
Lite-Heavy 8,501-10,00	0 1.10	0.00	81.80	18.20
Lite-Heavy 10,001-14,00	0 0.30	0.00	66.70	33.30
Med-Heavy 14,001-33,00	0 1.00	0.00	20.00	80.00
Heavy-Heavy 33,001-60,00	0 0.90	0.00	11.10	88.90
Line Haul > 60,000 lb	s 0.00	0.00	0.00	100.00
Urban Bus	0.20	0.00	50.00	50.00
Motorcycle	1.60	68.80	31.20	0.00
School Bus	0.10	0.00	0.00	100.00
Motor Home	1.40	7.10	85.70	7.20

	Residential			Commercial		
	Home-	Home-	Home-			
	Work	Shop	Other	Commute	Non-Work	Customer
Urban Trip Length (miles)	10.8	2.0	7.5	9.5	7.4	7.4
Rural Trip Length (miles)	16.8	7.1	7.9	14.7	6.6	6.6
Trip Speeds (mph)	35.0	35.0	35.0	35.0	35.0	35.0
% of Trips - Residential	32.9	18.0	49.1			
% of Trips - Commercial (b	y land	use)				
Elementary school				20.0	10.0	70.0
City park				5.0	2.5	92.5
Regnl shop. center				2.0	1.0	97.0
Government office building				10.0	5.0	85.0

Page: 5 02/14/2007 9:50 AM

MITIGATION OPTIONS SELECTED

Residential Mitigation Measures

Residential Mix of Uses Mitigation

Percent Reduction in Trips is 7.67% (calculated as a % of 9.57 trips/day)
Note that the above percent is applied to a baseline of 9.57 and that product is subtracted from the Unmitigated Trips

Inputs Selected:

The number of housing units within a 1/2 mile radius of the project, plus the number of residential units included in the project are 6578. The employment for the study area (within a 1/2 mile radius of the project) is 7894.

Residential Local-Serving Retail Mitigation

Percent Reduction in Trips is 2% (calculated as a % of 9.57 trips/day)
Note that the above percent is applied to a baseline of 9.57 and that product is subtracted from the Unmitigated Trips
Inputs Selected:

The Presence of Local-Serving Retail checkbox was selected.

Non-Residential Mitigation Measures

Non-Residential Mix of Uses Mitigation

Percent Reduction in Trips is 7.67%

Inputs Selected:

The number of housing units within a 1/2 mile radius of the project, plus the number of residential units included in the project are 6578. The employment for the study area (within a 1/2 mile radius of the project) is 7894.

Non-Residential Local-Serving Retail Mitigation

Percent Reduction in Trips is 2%

Inputs Selected:

The Presence of Local-Serving Retail checkbox was selected.

```
Page: 6
02/14/2007 9:50 AM

Changes made to the default values for Land Use Trip Percentages

Changes made to the default values for Area

The area souce mitigation measure option switch changed from off to on.
```

The natural gas single family usage rate changed from 6665.0 to 4094.1. The natural gas multi-family usage rate changed from 4011.5 to 2288.9. The wood stove percentage changed from 67 to 0.

The natural gas fireplace percentage changed from 33 to 100.

The landscape year changed from 2006 to 2010.

The consumer product ROG pounds per person changed from 0.0171 to 0.0151.

Changes made to the default values for Operations

The mitigation option switch changed from off to on.

The operational emission year changed from 2006 to 2010.
The home based work selection item changed from 8 to 7.
The home based shopping selection item changed from 8 to 7.
The home based shopping urban trip length changed from 7.3 to 2.
The home based other selection item changed from 8 to 7.
The commercial based commute selection item changed from 8 to 7.
The commercial based non-work selection item changed from 8 to 7.
The commercial based customer selection item changed from 8 to 7.
The Res and Non-Res Mix of Uses Mitigation changed from off to on.
The Res and Non-Res Local-Serving Retail Mitigation changed from off to on.

Page: 1 02/14/2007 9:51 AM

URBEMIS 2002 For Windows 8.7.0

File Name: H:\ClientData\Castle and Cooke\Gateway Project Madera\GATEWAY AIR STUDY 8-17-06 (distrib Froject Name: Gateway Village Operations Non-Residential Template

On-Road Motor Vehicle Emissions Based on EMFAC2002 version 2.2

SUMMARY REPORT (Tons/Year)

AREA SOURCE EMISSION ESTIMATE	S				
	ROG	NOx	CO	S02	PM10
TOTALS (tpy, unmitigated)	31.33	5.48	10.60	0.05	0.04
TOTALS (tpy, mitigated)	31.33	5.48	10.60	0.05	0.04
OPERATIONAL (VEHICLE) EMISSION	N ESTIMA	TES			
	ROG	NOx	CO	S02	PM10
TOTALS (tpy, unmitigated)	48.84	54.35	511.70	0.58	45.45
TOTALS (tpy, mitigated)	44.36	48.68	458.33	0.52	40.71
SUM OF AREA AND OPERATIONAL E	MISSION	ESTIMATES			
	ROG	NOx	CO	SO2	PM10
TOTALS (tpy, unmitigated)	80.17	59.82	522.30	0.63	45.48
TOTALS (tpy, mitigated)	75.69	54.16	468.93	0.57	40.74

Page: 2 02/14/2007 9:51 AM

URBEMIS 2002 For Windows 8.7.0

File Name: H:\ClientData\Castle and Cooke\Gateway Project Madera\GATEWAY AIR STUDY 8-17-06 (distrib

Project Name: Gateway Village Operations
Project Location: Non-Residential Template
On-Road Motor Vehicle Emissions Based on EMFAC2002 version 2.2

DETAIL REPORT (Tons/Year)

AREA SOURCE EMISSION ESTIMATES	(Tons per	Year,	Unmitigated)		
Source	ROG	NOx	co	SO2	PM10
Natural Gas	0.41	5.35	2.77	0.00	0.01
Hearth	0.00	0.00	0.00	0.00	0.00
Landscaping	0.98	0.13	7.83	0.05	0.03
Consumer Prdcts	24.81	-	-	-	-
Architectural Coatings	5.13	-	-	-	-
TOTALS (tpy, unmitigated)	31.33	5.48	10.60	0.05	0.04
AREA SOURCE EMISSION ESTIMATES	(Tons per	Year,	Mitigated)		
Source	ROG	NOx	CO	SO2	PM10
Natural Gas	0.41	5.35	2.77	0	0.01
Hearth	0.00	0.00	0.00	0.00	0.00
Landscaping	0.98	0.13	7.83	0.05	0.03
Consumer Prdcts	24.81	-	-	-	-
Architectural Coatings	5.13	-	_	-	_
TOTALS (tpy, mitigated)	31.33	5.48	10.60	0.05	0.04

Area Source Mitigation Measures

UNMITIGATED OPERATIONAL EMISSIONS

	ROG	NOx	CO	SO2	PM10
Single family housing	19.65	23.03	220.48	0.25	19.69
Apartments low rise	2.77	3.10	29.71	0.03	2.65
Retirement community	1.93	1.91	18.26	0.02	1.63
Elementary school	3.12	1.77	16.55	0.02	1.47
City park	0.19	0.13	1.16	0.00	0.11
Regnl shop. center	12.72	14.82	136.21	0.15	12.15
Goverment office building	8.46	9.58	89.33	0.10	7.74
TOTAL EMISSIONS (tons/yr)	48.84	54.35	511.70	0.58	45.45

Includes correction for passby trips. Does not include double counting adjustment for internal trips.

OPERATIONAL (Vehicle) EMISSION ESTIMATES

Analysis Year: 2015 Season: Annual

EMFAC Version: EMFAC2002 (9/2002)

Summary of Land Uses:

Unit Type	Acreage	Trip	Rate	No. Units	Total Trips
Single family housing	749.00	9.57	trips/dwelling unit	2,247.0021	,503.79
Apartments low rise	26.25	6.90	trips/dwelling unit	420.00 2	,898.00
Retirement community	96.00	3.71	trips/dwelling unit	480.00 1	,780.80
Elementary school		1.29	trips/students	1,600.00 2	,064.00
City park		1.59	trips/acres	86.80	138.01
Regnl shop. center		42.94	trips/1000 sq. ft.	435.6018	,704.66
Goverment office building		68.93	trips/1000 sq. ft.	182.9512	,610.74

Sum of Total Trips 59,700.01 Total Vehicle Miles Traveled 330,047.73

Vehicle Assumptions:

Fleet Mix:

Vehicle Type	Percent Type	Non-Catalyst	Catalyst	Diesel
Light Auto	54.40	0.40	99.40	0.20
Light Truck < 3,750 l	bs 15.30	0.70	98.00	1.30
Light Truck 3,751- 5,7	50 16.40	0.60	98.80	0.60
Med Truck 5,751-8,5	00 7.30	0.00	98.60	1.40
Lite-Heavy 8,501-10,0	00 1.10	0.00	81.80	18.20
Lite-Heavy 10,001-14,0	00 0.30	0.00	66.70	33.30
Med-Heavy 14,001-33,0	00 1.00	0.00	20.00	80.00
Heavy-Heavy 33,001-60,0	00 0.80	0.00	0.00	100.00
Line Haul > 60,000 l	bs 0.00	0.00	0.00	100.00
Urban Bus	0.20	0.00	50.00	50.00
Motorcycle	1.60	50.00	50.00	0.00
School Bus	0.10	0.00	0.00	100.00
Motor Home	1.50	0.00	93.30	6.70

	Residential			Commercial		
	Home-	Home-	Home-			
	Work	Shop	Other	Commute	Non-Work	Customer
Urban Trip Length (miles)	10.8	2.0	7.5	9.5	7.4	7.4
Rural Trip Length (miles)	16.8	7.1	7.9	14.7	6.6	6.6
Trip Speeds (mph)	35.0	35.0	35.0	35.0	35.0	35.0
% of Trips - Residential	32.9	18.0	49.1			
% of Trips - Commercial (by land	l use)				
Elementary school	-			20.0	10.0	70.0
City park				5.0	2.5	92.5
Regnl shop. center				2.0	1.0	97.0
Goverment office building	1	•		10.0	5.0	85.0

MITIGATED OPERATIONAL EMISSIONS

	ROG	NOx	CO	S02	PM10
Single family housing	17.98	20.81	199.16	0.23	17.79
Apartments low rise	2.46	2.69	25.73	0.03	2.30
Retirement community	1.58	1.43	13.71	0.02	1.22
Elementary school	2.98	1.60	14.95	0.02	1.33
City park	0.18	0.12	1.05	0.00	0.10
Regnl shop. center	11.53	13.39	123.04	0.14	10.98
Government office building	7.66	8.65	80.69	0.09	6.99
TOTAL EMISSIONS (tons/yr)	44.36	48.68	458.33	0.52	40.71
PERCENTAGE REDUCTION %	9	10	10	10	10

Includes correction for passby trips. Does not include double counting adjustment for internal trips.

OPERATIONAL (Vehicle) EMISSION ESTIMATES

Analysis Year: 2015 Season: Annual

EMFAC Version: EMFAC2002 (9/2002)

Summary of Land Uses:

Unit Type	Acreage	Trip	Rate	No. Units	Total Trips
Single family housing	749.00	9.57	trips/dwelling unit	2,247.0021	,503.79
Apartments low rise	26.25	6.90	trips/dwelling unit	420.00 2	,898.00
Retirement community	96.00	3.71	trips/dwelling unit	480.00 1	,780.80
Elementary school		1.29	trips/students	1,600.00 2	,064.00
City park		1.59	trips/acres	86.80	138.01
Regnl shop. center		42.94	trips/1000 sq. ft.	435.6018	,704.66
Government office building		68.93	trips/1000 sq. ft.	182.9512	,610.74

Sum of Total Trips 59,700.01
Total Vehicle Miles Traveled 330,047.73

Vehicle Assumptions:

Fleet Mix:

Vehicle Type	Percent Type	Non-Catalyst	Catalyst	Diesel
Light Auto	54.40	0.40	99.40	0.20
Light Truck < 3,750 lb	s 15.30	0.70	98.00	1.30
Light Truck 3,751- 5,75	0 16.40	0.60	98.80	0.60
Med Truck 5,751-8,50	0 7.30	0.00	98.60	1.40
Lite-Heavy 8,501-10,00	0 1.10	0.00	81.80	18.20
Lite-Heavy 10,001-14,00	0.30	0.00	66.70	33.30
Med-Heavy 14,001-33,00	0 1.00	0.00	20.00	80.00
Heavy-Heavy 33,001-60,00	0.80	0.00	0.00	100.00
Line Haul > 60,000 lb	s 0.00	0.00	0.00	100.00
Urban Bus	0.20	0.00	50.00	50.00
Motorcycle	1.60	50.00	50.00	0.00
School Bus	0.10	0.00	0.00	100.00
Motor Home	1.50	0.00	93.30	6.70

	Residential			Commercial		
	Home-	Home-	Home-	~ .	1	~
	Work	Shop	Other	Commute	Non-Work	Customer
Urban Trip Length (miles)	10.8	2.0	7.5	9.5	7.4	7.4
Rural Trip Length (miles)	16.8	7.1	7.9	14.7	6.6	6.6
Trip Speeds (mph)	35.0	35.0	35.0	35.0	35.0	35.0
% of Trips - Residential	32.9	18.0	49.1			
% of Trips - Commercial (Elementary school City park Regnl shop. center	-	l use)		20.0 5.0 2.0	10.0 2.5 1.0	70.0 92.5 97.0
Goverment office building				10.0	5.0	85.0

Page: 5 02/14/2007 9:51 AM

MITIGATION OPTIONS SELECTED

Residential Mitigation Measures

Residential Mix of Uses Mitigation

Percent Reduction in Trips is 7.67% (calculated as a % of 9.57 trips/day)
Note that the above percent is applied to a baseline of 9.57 and that product is subtracted from the Unmitigated Trips
Inputs Selected:

The number of housing units within a 1/2 mile radius of the project, plus the number of residential units included in the project are 6578.

The employment for the study area (within a 1/2 mile radius of the project) is 7894.

Residential Local-Serving Retail Mitigation

Percent Reduction in Trips is 2% (calculated as a % of 9.57 trips/day)
Note that the above percent is applied to a baseline of 9.57 and that product is subtracted from the Unmitigated Trips
Inputs Selected:

The Presence of Local-Serving Retail checkbox was selected.

Non-Residential Mitigation Measures

Non-Residential Mix of Uses Mitigation

Mon-Residencial Mix of Oses Micigation

Percent Reduction in Trips is 7.67%

Inputs Selected:

The number of housing units within a 1/2 mile radius of the project, plus the number of residential units included in the project are 6578.

The employment for the study area (within a 1/2 mile radius of the project) is 7894.

Non-Residential Local-Serving Retail Mitigation

Percent Reduction in Trips is 2%

Inputs Selected:

The Presence of Local-Serving Retail checkbox was selected.

```
Page: 6
02/14/2007 9:51 AM
```

Changes made to the default values for Land Use Trip Percentages

Changes made to the default values for Area

The area souce mitigation measure option switch changed from off to on. The natural gas single family usage rate changed from 6665.0 to 4094.1. The natural gas multi-family usage rate changed from 4011.5 to 2288.9. The wood stove percentage changed from 67 to 0. The natural gas fireplace percentage changed from 33 to 100. The landscape year changed from 2006 to 2015. The consumer product ROG pounds per person changed from 0.0171 to 0.0151.

Changes made to the default values for Operations

The mitigation option switch changed from off to on.

The operational emission year changed from 2006 to 2015.

The home based work selection item changed from 8 to 7.

The home based shopping selection item changed from 8 to 7.

The home based shopping urban trip length changed from 7.3 to 2.

The home based other selection item changed from 8 to 7.

The commercial based commute selection item changed from 8 to 7.

The commercial based non-work selection item changed from 8 to 7.

The commercial based customer selection item changed from 8 to 7.

The Res and Non-Res Mix of Uses Mitigation changed from off to on.

The Res and Non-Res Local-Serving Retail Mitigation changed from off to on.

Page: 1 02/14/2007 9:52 AM

File Name:

URBEMIS 2002 For Windows 8.7.0

H:\ClientData\Castle and Cooke\Gateway Project Madera\GATEWAY AIR STUDY 8-17-06 (distrib

Project Name: Gateway Village Operations
Project Location: Non-Residential Template
On-Road Motor Vehicle Emissions Based on EMFAC2002 version 2.2

SUMMARY REPORT (Tons/Year)

AREA SOURCE EMISSION ESTIMAT	ES				
	ROG	NOx	CO	S02	PM10
TOTALS (tpy, unmitigated)	36.03	6.30	12.24	0.06	0.04
TOTALS (tpy, mitigated)	36.03	6.30	12.24	0.06	0.04
OPERATIONAL (VEHICLE) EMISSION	ON ESTIMAT	ES			
	ROG	NOx	CO	SO2	PM10
TOTALS (tpy, unmitigated)	55.16	61.56	579.83	0.65	51.50
TOTALS (tpy, mitigated)	50.08	55.14	519.31	0.59	46.12
SUM OF AREA AND OPERATIONAL I		STIMATES			
	ROG	\mathbf{x} OM	CO	SO2	PM10
TOTALS (tpy, unmitigated)	91.18	67.86	592.07	0.71	51.54
TOTALS (tpy, mitigated)	86.11	61.44	531.54	0.64	46.17

Page: 2 02/14/2007 9:52 AM

URBEMIS 2002 For Windows 8.7.0

File Name: H:\ClientData\Castle and Cooke\Gateway Project Madera\GATEWAY AIR STUDY 8-17-06 (distrib Project Name: Gateway Village Operations Project Location: Non-Residential Template On-Road Motor Vehicle Emissions Based on EMFAC2002 version 2.2

DETAIL REPORT (Tons/Year)

AREA SOURCE EMISSION ESTIMATES	(Tons per	Year,	Unmitigated)		
Source	ROG	NOx	со	SO2	PM10
Natural Gas	0.47	6.15	3.18	0.00	0.01
Hearth	0.00	0.00	0.00	0.00	0.00
Landscaping	1.14	0.15	9.06	0.06	0.03
Consumer Prdcts	28.51	-	-	_	-
Architectural Coatings	5.92	-	-	-	-
TOTALS (tpy, unmitigated)	36.03	6.30	12.24	0.06	0.04
AREA SOURCE EMISSION ESTIMATES	(Tons per	Year,	Mitigated)		
Source	ROG	NOx	CO	SO2	PM10
Natural Gas	0.47	6.15	3.18	0	0.01
Hearth	0.00	0.00	0.00	0.00	0.00
Landscaping	1.14	0.15	9.06	0.06	0.03
Consumer Prdcts	28.51	-	-	-	-
Architectural Coatings	5.92	-	-	-	-
TOTALS (tpy, mitigated)	36.03	6.30	12.24	0.06	0.04

Area Source Mitigation Measures

Page: 3 02/14/2007 9:52 AM

UNMITIGATED OPERATIONAL EMISSIONS

	ROG	NOx	CO	SO2	PM10
Single family housing	22.71	26.61	254.72	0.29	22.75
Apartments low rise	3.04	3.40	32.54	0.04	2.91
Retirement community	2.26	2.23	21.30	0.02	1.90
Elementary school	3.12	1.77	16.55	0.02	1.47
City park	0.22	0.15	1.39	0.00	0.13
Regnl shop. center	13.99	16.31	149.83	0.17	13.37
General office building	0.16	0.15	1.40	0.00	0.13
Goverment office building	9.67	10.94	102.09	0.11	8.85
TOTAL EMISSIONS (tons/yr)	55.16	61.56	579.83	0.65	51.50

Includes correction for passby trips.

Does not include double counting adjustment for internal trips.

OPERATIONAL (Vehicle) EMISSION ESTIMATES

Analysis Year: 2015 Season: Annual

EMFAC Version: EMFAC2002 (9/2002)

Summary of Land Uses:

Unit Type	Acreage	Trip	Rate	No. Units	Total Trips
Single family housing	865.33	9.57	trips/dwelling unit	2,596.0024	,843.72
Apartments low rise	28.75	6.90	trips/dwelling unit	460.00 3	,174.00
Retirement community	112.00	3.71	trips/dwelling unit	560.00 2	,077.60
Elementary school		1.29	trips/students	1,600.00 2	,064.00
City park		1.59	trips/acres	103.60	164.72
Regnl shop. center		42.94	trips/1000 sq. ft.	479.1620	,575.13
General office building		3.32	trips/1000 sq. ft.	43.56	144.62
Goverment office building		68.93	trips/1000 sq. ft.	209.0914	,412.57

Sum of Total Trips 67,456.37 Total Vehicle Miles Traveled 374,015.50

Vehicle Assumptions:

Fleet Mix:

Vehicle Type	Percent Type	Non-Catalyst	Catalyst	Diesel
Light Auto	54.40	0.40	99.40	0.20
Light Truck < 3,750 lbs	15.30	0.70	98.00	1.30
Light Truck 3,751- 5,750	16.40	0.60	98.80	0.60
Med Truck 5,751-8,500	7.30	0.00	98.60	1.40
Lite-Heavy 8,501-10,000	1.10	0.00	81.80	18.20
Lite-Heavy 10,001-14,000	0.30	0.00	66.70	33.30
Med-Heavy 14,001-33,000	1.00	0.00	20.00	80.00
Heavy-Heavy 33,001-60,000	0.80	0.00	0.00	100.00
Line Haul > 60,000 lbs	0.00	0.00	0.00	100.00
Urban Bus	0.20	0.00	50.00	50.00
Motorcycle	1.60	50.00	50.00	0.00
School Bus	0.10	0.00	0.00	100.00
Motor Home	1.50	0.00	93.30	6.70

Commercial		
te Non-Work	Customer	
5 7.4	7.4	
7 6.6	6.6	
0 35.0	35.0	
0 2.5 0 1.0 0 17.5	70.0 92.5 97.0 47.5 85.0	
(0 2.5 0 1.0	

Page: 4 02/14/2007 9:52 AM

MITIGATED OPERATIONAL EMISSIONS

	ROG	NOx	CO	SO2	PM10
Single family housing	20.77	24.04	230.10	0.26	20.55
Apartments low rise	2.69	2.94	28.18	0.03	2.52
Retirement community	1.84	1.67	15.99	0.02	1.43
Elementary school	2.98	1.60	14.95	0.02	1.33
City park	0.21	0.14	1.25	0.00	0.12
Regnl shop. center	12.68	14.73	135.35	0.15	12.08
General office building	0.15	0.14	1.27	0.00	0.12
Goverment office building	8.75	9.89	92.22	0.10	7.99
TOTAL EMISSIONS (tons/yr)	50.08	55.14	519.31	0.59	46.12
PERCENTAGE REDUCTION %	9	10	10	10	10

Includes correction for passby trips.

Does not include double counting adjustment for internal trips.

OPERATIONAL (Vehicle) EMISSION ESTIMATES

Analysis Year: 2015 Season: Annual

EMFAC Version: EMFAC2002 (9/2002)

Summary of Land Uses:

Unit Type	Acreage	Trip	Rate	No. Total Units Trips
Single family housing	865.33	9.57	trips/dwelling unit	2,596.0024,843.72
Apartments low rise	28.75	6.90	trips/dwelling unit	460.00 3,174.00
Retirement community	112.00	3.71	trips/dwelling unit	560.00 2,077.60
Elementary school		1.29	trips/students	1,600.00 2,064.00
City park		1.59	trips/acres	103.60 164.72
Regnl shop. center		42.94	trips/1000 sq. ft.	479.1620,575.13
General office building		3.32	trips/1000 sq. ft.	43.56 144.62
Goverment office building		68.93	trips/1000 sq. ft.	209.0914,412.57

Sum of Total Trips 67,456.37 Total Vehicle Miles Traveled 374,015.50

Vehicle Assumptions:

Fleet Mix:

Vehicle Type	Percent Type	Non-Catalyst	Catalyst	Diesel
Light Auto	54.40	0.40	99.40	0.20
Light Truck < 3,750 lbs	s 15.30	0.70	98.00	1.30
Light Truck 3,751- 5,750	0 16.40	0.60	98.80	0.60
Med Truck 5,751-8,500	0 7.30	0.00	98.60	1.40
Lite-Heavy 8,501-10,000	0 1.10	0.00	81.80	18.20
Lite-Heavy 10,001-14,000	0.30	0.00	66.70	33.30
Med-Heavy 14,001-33,000	0 1.00	0.00	20.00	80.00
Heavy-Heavy 33,001-60,000	0.80	0.00	0.00	100.00
Line Haul > 60,000 lb:	s 0.00	0.00	0.00	100.00
Urban Bus	0.20	0.00	50.00	50.00
Motorcycle	1.60	50.00	50.00	0.00
School Bus	0.10	0.00	0.00	100.00
Motor Home	1.50	0.00	93.30	6.70

Travel Conditions						
		Residential			Commercial	-
	Home-	Home-	Home-			
	Work	Shop	Other	Commute	Non-Work	Customer
Urban Trip Length (miles)	10.8	2.0	7.5	9.5	7.4	7.4
Rural Trip Length (miles)	16.8	7.1	7.9	14.7	6.6	6.6
Trip Speeds (mph)	35.0	35.0	35.0	35.0	35.0	35.0
% of Trips - Residential	32.9	18.0	49.1			
% of Trips - Commercial (bv land	use)				
Elementary school	-			20.0	10.0	70.0
City park				5.0	2.5	92.5
Regnl shop, center				2.0	1.0	97.0
General office building				35.0	17.5	47.5
Goverment office building				10.0	5.0	85.0

Page: 5 02/14/2007 9:52 AM

MITIGATION OPTIONS SELECTED

Residential Mitigation Measures

Residential Mix of Uses Mitigation

Percent Reduction in Trips is 7.67% (calculated as a % of 9.57 trips/day)
Note that the above percent is applied to a baseline of 9.57 and that product is subtracted from the Unmitigated Trips
Inputs Selected:

The number of housing units within a 1/2 mile radius of the project, plus the number of residential units included in the project are 6578.

The employment for the study area (within a 1/2 mile radius of the project) is 7894.

Residential Local-Serving Retail Mitigation

Percent Reduction in Trips is 2% (calculated as a % of 9.57 trips/day)
Note that the above percent is applied to a baseline of 9.57 and that product is subtracted from the Unmitigated Trips
Inputs Selected:

The Presence of Local-Serving Retail checkbox was selected.

Non-Residential Mitigation Measures

Non-Residential Mix of Uses Mitigation

Percent Reduction in Trips is 7.67%

Inputs Selected:

The number of housing units within a 1/2 mile radius of the project, plus the number of residential units included in the project are 6578.

The employment for the study area (within a 1/2 mile radius of the project) is 7894.

Non-Residential Local-Serving Retail Mitigation

Percent Reduction in Trips is 2%

Inputs Selected:

The Presence of Local-Serving Retail checkbox was selected.

Page: 6 02/14/2007 9:52 AM

Changes made to the default values for Land Use Trip Percentages

Changes made to the default values for Area

The area souce mitigation measure option switch changed from off to on. The natural gas single family usage rate changed from 6665.0 to 4094.1. The natural gas multi-family usage rate changed from 4011.5 to 2288.9. The wood stove percentage changed from 67 to 0. The natural gas fireplace percentage changed from 33 to 100. The landscape year changed from 2006 to 2015. The consumer product ROG pounds per person changed from 0.0171 to 0.0151.

Changes made to the default values for Operations

The mitigation option switch changed from off to on.

The operational emission year changed from 2006 to 2015.
The home based work selection item changed from 8 to 7.
The home based shopping selection item changed from 8 to 7.
The home based shopping urban trip length changed from 7.3 to 2.
The home based other selection item changed from 8 to 7.
The commercial based commute selection item changed from 8 to 7.
The commercial based non-work selection item changed from 8 to 7.
The commercial based customer selection item changed from 8 to 7.
The Res and Non-Res Mix of Uses Mitigation changed from off to on.
The Res and Non-Res Local-Serving Retail Mitigation changed from off to on.

Page: 1 02/14/2007 9:53 AM

URBEMIS 2002 For Windows 8.7.0

H:\ClientData\Castle and Cooke\Gateway Project Madera\GATEWAY AIR STUDY 8-17-06 (distrib Gateway Village Operations Non-Residential Template

File Name: Project Name: Project Location:

On-Road Motor Vehicle Emissions Based on EMFAC2002 version 2.2

SUMMARY REPORT (Tons/Year)

מבורות	COLIDGE	TMTCCTON	ECTTMATEC.	

AREA SOURCE EMISSION ESTIMATES					
	ROG	NOx	CO	SO2	PM10
TOTALS (tpy, unmitigated)	41.00	7.46	14.17	0.06	0.05
TOTALS (tpy, mitigated)	41.00	7.46	14.17	0.06	0.05
OPERATIONAL (VEHICLE) EMISSION	ESTIMA	ATES			
	ROG	NOx	CO	SO2	PM10
TOTALS (tpy, unmitigated)	65.45	71.54	673.82	0.76	59.87
TOTALS (tpy, mitigated)	59.57	64.10	603.64	0.68	53.63
SUM OF AREA AND OPERATIONAL EM	ISSION	ESTIMATES			
	ROG	NOx	CO	SO2	PM10
TOTALS (tpy, unmitigated)	106.45	79.01	688.00	0.82	59.92
TOTALS (tpy, mitigated)	100.57	71.57	617.82	0.75	53.68

Page: 2 02/14/2007 9:53 AM

URBEMIS 2002 For Windows 8.7.0

H:\ClientData\Castle and Cooke\Gateway Project Madera\GATEWAY AIR STUDY 8-17-06 (distrib Gateway Village Operations
Non-Residential Template File Name:

Project Name: Project Location: On-Road Motor Vehicle Emissions Based on EMFAC2002 version 2.2

DETAIL REPORT (Tons/Year)

AREA SOURCE EMISSION ESTIMATES	(Tons per	Year,	Unmitigated)			
Source	ROG	NOx	CO	SO2	PM10	
Natural Gas	0.55	7.30	3.88	0.00	0.01	
Hearth	0.00	0.00	0.00	0.00	0.00	
Landscaping	1.29	0.17	10.30	0.06	0.03	
Consumer Prdcts	32.21	_	-	-	-	
Architectural Coatings	6.95	_	-	-	-	
TOTALS (tpy, unmitigated)	41.00	7.46	14.17	0.06	0.05	
AREA SOURCE EMISSION ESTIMATES	(Tons per	Year,	Mitigated)			
Source	ROG	NOx	CO	SO2	PM10	
Natural Gas	0.55	7.30	3.88	0	0.01	
Hearth	0.00	0.00	0.00	0.00	0.00	
Landscaping	1.29	0.17	10.30	0.06	0.03	
Consumer Prdcts	32.21	_	-	_	_	
Architectural Coatings	6.95	_	-	-	-	
TOTALS (tpy, mitigated)	41.00	7.46	14.17	0.06	0.05	

Area Source Mitigation Measures

Page: 3 02/14/2007 9:53 AM

UNMITIGATED OPERATIONAL EMISSIONS

	ROG	NOx	CO	SO2	PM10
Single family housing	25.76	30.19	288.96	0.33	25.81
Apartments low rise	3.30	3.70	35.37	0.04	3.16
Retirement community	2.58	2.54	24.34	0.03	2.17
Elementary school	6.24	3.54	33.11	0.04	2.94
City park	0.26	0.17	1.59	0.00	0.15
Regnl shop. center	15.26	17.79	163.45	0.18	14.58
General office building	0.32	0.30	2.81	0.00	0.26
Goverment office building	11.08	12.54	116.98	0.13	10.14
General light industry	0.66	0.77	7.21	0.01	0.67
TOTAL EMISSIONS (tons/yr)	65.45	71.54	673.82	0.76	59.87

Includes correction for passby trips. Does not include double counting adjustment for internal trips.

OPERATIONAL (Vehicle) EMISSION ESTIMATES

Analysis Year: 2015 Season: Annual

EMFAC Version: EMFAC2002 (9/2002)

Summary of Land Uses:

Unit Type	Acreage	Trip	Rate		No. Units	Total Trips
Single family housing Apartments low rise Retirement community Elementary school City park Regnl shop. center General office building	981.67 31.25 128.00	9.57 6.90 3.71 1.29 1.59 42.94	trips/dwelling trips/dwelling trips/dwelling trips/students trips/acres trips/1000 sq. trips/1000 sq.	unit unit ft.	2,945.0028, 500.00 3, 640.00 2, 3,200.00 4, 118.40 522.7222, 87.12	183.65 450.00 374.40 128.00 188.26
Government office building		68.93	trips/1000 sq.	ft.	239.5816,	
General light industry		6.97	trips/1000 sq. :	ft.	96.92	675.53

Sum of Total Trips 78,248.92
Total Vehicle Miles Traveled 434,801.34

Vehicle Assumptions:

Fleet Mix:

Vehicle Type	Percent Type	Non-Catalyst	Catalyst	Diesel
Light Auto	54.40	0.40	99.40	0.20
Light Truck < 3,750 lbs	s 15.30	0.70	98.00	1.30
Light Truck 3,751- 5,75	0 16.40	0.60	98.80	0.60
Med Truck 5,751-8,50	0 7.30	0.00	98.60	1.40
Lite-Heavy 8,501-10,000	0 1.10	0.00	81.80	18.20
Lite-Heavy 10,001-14,000	0.30	0.00	66.70	33.30
Med-Heavy 14,001-33,00	0 1.00	0.00	20.00	80.00
Heavy-Heavy 33,001-60,000	0.80	0.00	0.00	100.00
Line Haul > 60,000 lb:	s 0.00	0.00	0.00	100.00
Urban Bus	0.20	0.00	50.00	50.00
Motorcycle	1.60	50.00	50.00	0.00
School Bus	0.10	0.00	0.00	100.00
Motor Home	1.50	0.00	93.30	6.70

TIAVCI CONGICIONS						
		Residential			Commercial	L
	Home-	Home-	Home-			
	Work	Shop	Other	Commute	Non-Work	Customer
Urban Trip Length (miles)	10.8	2.0	7.5	9.5	7.4	7.4
Rural Trip Length (miles)	16.8	7.1	7.9	14.7	6.6	6.6
Trip Speeds (mph)	35.0	35.0	35.0	35.0	35.0	35.0
% of Trips - Residential	32.9	18.0	49.1			
% of Trips - Commercial (bv land	l use)				
Elementary school	•	•		20.0	10.0	70.0
City park				5.0	2.5	92.5
Regnl shop. center				2.0	1.0	97.0
General office building				35.0	17.5	47.5
Goverment office building				10.0	5.0	85.0
General light industry				50.0	25.0	25.0

Page: 4 02/14/2007 9:53 AM

Page: 5 02/14/2007 9:53 AM

MITIGATED OPERATIONAL EMISSIONS

	ROG	NOx	CO	SO2	PM10
Single family housing	23.57	27.27	261.03	0.30	23.32
Apartments low rise	2.93	3.20	30.63	0.03	2.74
Retirement community	2.10	1.91	18.27	0.02	1.63
Elementary school	5.96	3.20	29.91	0.03	2.65
City park	0.24	0.16	1.43	0.00	0.13
Regnl shop. center	13.84	16.07	147.65	0.17	13.17
General office building	0.30	0.27	2.54	0.00	0.23
Goverment office building	10.03	11.33	105.67	0.12	9.16
General light industry	0.61	0.69	6.51	0.01	0.60
TOTAL EMISSIONS (tons/yr)	59.57 9	64.10 10	603.64 10	0.68	53.63 10
PERCENTAGE REDUCTION %	9	10	10	10	10

Includes correction for passby trips.

Does not include double counting adjustment for internal trips.

OPERATIONAL (Vehicle) EMISSION ESTIMATES

Analysis Year: 2015 Season: Annual

EMFAC Version: EMFAC2002 (9/2002)

Summary of Land Uses:

Single family housing 981.67 9.57 trips/dwelling unit 2,945.0028,183.69 Apartments low rise 31.25 6.90 trips/dwelling unit 500.00 3,450.00 Retirement community 128.00 3.71 trips/dwelling unit 640.00 2,374.40	Unit Type	Acreage	Trip	Rate	No. Units	Total Trips
Elementary school 1.29 trips/students 3,200.00 4,128.00 City park 1.59 trips/acres 118.40 188.20 Regnl shop. center 42.94 trips/1000 sq. ft. 522.7222,445.60 General office building 68.93 trips/1000 sq. ft. 87.12 289.20 General light industry 6.97 trips/1000 sq. ft. 96.92 675.51	Apartments low rise Retirement community Elementary school City park Regnl shop. center General office building Goverment office building	31.25	6.90 3.71 1.29 1.59 42.94 3.32 68.93	trips/dwelling unit trips/dwelling unit trips/students trips/acres trips/1000 sq. ft. trips/1000 sq. ft. trips/1000 sq. ft.	500.00 3 640.00 2 3,200.00 4 118.40 522.7222 87.12 239.5816	,450.00 ,374.40 ,128.00 188.26 ,445.60 289.24

Sum of Total Trips 78,248.92
Total Vehicle Miles Traveled 434,801.34

Vehicle Assumptions:

Fleet Mix:

Vehicle Type	Percent Type	Non-Catalyst	Catalyst	Diesel
Light Auto	54.40	0.40	99.40	0.20
Light Truck < 3,750 lbs	15.30	0.70	98.00	1.30
Light Truck 3,751- 5,750	16.40	0.60	98.80	0.60
Med Truck 5,751-8,500	7.30	0.00	98.60	1.40
Lite-Heavy 8,501-10,000	1.10	0.00	81.80	18.20
Lite-Heavy 10,001-14,000	0.30	0.00	66.70	33.30
Med-Heavy 14,001-33,000	1.00	0.00	20.00	80.00
Heavy-Heavy 33,001-60,000	0.80	0.00	0.00	100.00
Line Haul > 60,000 lbs	0.00	0.00	0.00	100.00
Urban Bus	0.20	0.00	50.00	50.00
Motorcycle	1.60	50.00	50.00	0.00
School Bus	0.10	0.00	0.00	100.00
Motor Home	1.50	0.00	93.30	6.70

Travel Conditions		n 1 2 1 - 2			a	
	Residential		Commercial			
	Home-	Home-	Home-			
	Work	Shop	Other	Commute	Non-Work	Customer
Urban Trip Length (miles)	10.8	2.0	7.5	9.5	7.4	7.4
Rural Trip Length (miles)	16.8	7.1	7.9	14.7	6.6	6.6
Trip Speeds (mph)	35.0	35.0	35.0	35.0	35.0	35.0
% of Trips - Residential	32.9	18.0	49.1			
a of mains and all (
% of Trips - Commercial (by Tano	use)				
Elementary school				20.0	10.0	70.0
City park				5.0	2.5	92.5
Regnl shop. center				2.0	1.0	97.0
General office building				35.0	17.5	47.5
Goverment office building				10.0	5.0	85.0

Page: 6 02/14/2007 9:53 AM

General light industry

50.0

25.0 25.0

Page: 7 02/14/2007 9:53 AM

MITIGATION OPTIONS SELECTED

Residential Mitigation Measures

Residential Mix of Uses Mitigation

Percent Reduction in Trips is 7.67% (calculated as a % of 9.57 trips/day)
Note that the above percent is applied to a baseline of 9.57 and that product is subtracted from the Unmitigated Trips

Inputs Selected:

The number of housing units within a 1/2 mile radius of the project, plus the number of residential units included in the project are 6578.

The employment for the study area (within a 1/2 mile radius of the project) is 7894.

Residential Local-Serving Retail Mitigation

Percent Reduction in Trips is 2% (calculated as a % of 9.57 trips/day)
Note that the above percent is applied to a baseline of 9.57 and that product is subtracted from the Unmitigated Trips
Inputs Selected:

The Presence of Local-Serving Retail checkbox was selected.

Non-Residential Mitigation Measures

Non-Residential Mix of Uses Mitigation

Percent Reduction in Trips is 7.67%

Inputs Selected:

The number of housing units within a 1/2 mile radius of the project, plus the number of residential units included in the project are 6578.

The employment for the study area (within a 1/2 mile radius of the project) is 7894.

Non-Residential Local-Serving Retail Mitigation

Percent Reduction in Trips is 2%

Inputs Selected:

The Presence of Local-Serving Retail checkbox was selected.

Page: 8 02/14/2007 9:53 AM

Changes made to the default values for Land Use Trip Percentages

Changes made to the default values for Area

The area souce mitigation measure option switch changed from off to on. The natural gas single family usage rate changed from 6665.0 to 4094.1. The natural gas multi-family usage rate changed from 4011.5 to 2288.9. The wood stove percentage changed from 67 to 0. The natural gas fireplace percentage changed from 33 to 100. The landscape year changed from 2006 to 2015. The consumer product ROG pounds per person changed from 0.0171 to 0.0151.

Changes made to the default values for Operations

The mitigation option switch changed from off to on.
The operational emission year changed from 2006 to 2015.
The home based work selection item changed from 8 to 7.
The home based shopping selection item changed from 8 to 7.
The home based shopping urban trip length changed from 7.3 to 2.
The home based other selection item changed from 8 to 7.
The commercial based commute selection item changed from 8 to 7.
The commercial based non-work selection item changed from 8 to 7.
The commercial based customer selection item changed from 8 to 7.
The Res and Non-Res Mix of Uses Mitigation changed from off to on.
The Res and Non-Res Local-Serving Retail Mitigation changed from off to on.

Page: 1

02/14/2007 9:54 AM

URBEMIS 2002 For Windows 8.7.0

File Name: H:\ClientData\Castle and Cooke\Gateway Project Madera\GATEWAY AIR STUDY 8-17-06 (distrib

Project Name: Gateway Village Operations
Project Location: Non-Residential Template

On-Road Motor Vehicle Emissions Based on EMFAC2002 version 2.2

SUMMARY REPORT (Tons/Year)

AREA SOURCE EMISSION ESTIMATE	S				
	ROG	NOx	CO	SO2	PM10
TOTALS (tpy, unmitigated)	41.00	7.46	14.17	0.06	0.05
TOTALS (tpy, mitigated)	41.00	7.46	14.17	0.06	0.05
OPERATIONAL (VEHICLE) EMISSIO	N ESTIMAT	ES			
	ROG	NOx	CO	SO2	PM10
TOTALS (tpy, unmitigated)	48.17	48.96	487.48	0.76	59.74
TOTALS (tpy, mitigated)	43.90	43.87	436.70	0.68	53.52
SUM OF AREA AND OPERATIONAL E	MICCION E	сттилино			
SUM OF AREA AND OPERATIONAL E			-		
	ROG	NOx	CO	SO2	PM10
TOTALS (tpy, unmitigated)	89.17	56.43	501.65	0.82	59.79
TOTALS (tpy, mitigated)	84.91	51.33	450.88	0.74	53.56

Page: 2 02/14/2007 9:54 AM

URBEMIS 2002 For Windows 8.7.0

H:\ClientData\Castle and Cooke\Gateway Project Madera\GATEWAY AIR STUDY 8-17-06 (distrib Gateway Village Operations Non-Residential Template File Name:

Project Name: Project Location:

On-Road Motor Vehicle Emissions Based on EMFAC2002 version 2.2

DETAIL REPORT (Tons/Year)

AREA SOURCE EMISSION ESTIMATES	(Tons	per Year,	Unmitigated)		
Source	ROG	NOx	CO	SO2	PM10
Natural Gas	0.55	7.30	3.88	0.00	0.01
Hearth	0.00	0.00	0.00	0.00	0.00
Landscaping	1.29	0.17	10.30	0.06	0.03
Consumer Prdcts	32.21	-	-	-	-
Architectural Coatings	6.95	-	-	-	-
TOTALS (tpy, unmitigated)	41.00	7.46	14.17	0.06	0.05
AREA SOURCE EMISSION ESTIMATES	(Tons	per Year,	Mitigated)		
AREA SOURCE EMISSION ESTIMATES Source	(Tons ROG	per Year, NOx	Mitigated) CO	S02	PM10
		_	J	SO2 0	PM10
Source	ROG	NOx	CO	-	
Source Natural Gas	ROG 0.55	NOx 7.30	CO 3.88	0	0.01
Source Natural Gas Hearth	ROG 0.55 0.00	NOx 7.30 0.00	CO 3.88 0.00	0.00	0.01
Source Natural Gas Hearth Landscaping Consumer Prdcts Architectural Coatings	ROG 0.55 0.00 1.29	NOx 7.30 0.00	CO 3.88 0.00	0.00	0.01
Source Natural Gas Hearth Landscaping Consumer Prdcts	ROG 0.55 0.00 1.29 32.21	NOx 7.30 0.00	CO 3.88 0.00	0.00	0.01

Area Source Mitigation Measures

UNMITIGATED OPERATIONAL EMISSIONS

	ROG	NOx	CO	SO2	PM10
Single family housing	18.89	20.66	209.33	0.33	25.76
Apartments low rise	2.43	2.53	25.62	0.04	3.15
Retirement community	1.92	1.74	17.64	0.03	2.17
Elementary school	4.80	2.43	23.94	0.04	2.93
City park	0.20	0.12	1.15	0.00	0.15
Regnl shop. center	11.13	12.18	118.11	0.18	14.55
General office building	0.24	0.21	2.04	0.00	0.26
Government office building	8.06	8.58	84.42	0.13	10.11
General light industry	0.49	0.53	5.23	0.01	0.66
TOTAL EMISSIONS (tons/yr)	48.17	48.96	487.48	0.76	59.74

Includes correction for passby trips.

Does not include double counting adjustment for internal trips.

OPERATIONAL (Vehicle) EMISSION ESTIMATES

Analysis Year: 2020 Season: Annual

EMFAC Version: EMFAC2002 (9/2002)

Summary of Land Uses:

Unit Type	Acreage	Trip	Rate	No. Units	Total Trips
Single family housing Apartments low rise Retirement community Elementary school City park Regnl shop. center General office building Government office building General light industry	981.67 31.25 128.00	6.90 3.71 1.29 1.59 42.94 3.32 68.93	trips/dwelling unit trips/dwelling unit trips/dwelling unit trips/students trips/acres trips/1000 sq. ft. trips/1000 sq. ft. trips/1000 sq. ft. trips/1000 sq. ft.	500.00 3,	450.00 374.40 128.00 188.26 445.60 289.24 514.25

Sum of Total Trips 78,248.92
Total Vehicle Miles Traveled 434,801.34

Vehicle Assumptions:

Fleet Mix:

Vehicle Type	Percent Type	Non-Catalyst	Catalyst	Diesel
Light Auto	54.40	0.40	99.40	0.20
Light Truck < 3,750 lbs	15.30	0.70	98.00	1.30
Light Truck 3,751- 5,750	16.40	0.60	98.80	0.60
Med Truck 5,751-8,50	7.30	0.00	98.60	1.40
Lite-Heavy 8,501-10,000	1.10	0.00	81.80	18.20
Lite-Heavy 10,001-14,00	0.30	0.00	66.70	33.30
Med-Heavy 14,001-33,00	1.00	0.00	20.00	80.00
Heavy-Heavy 33,001-60,000	0.80	0.00	0.00	100.00
Line Haul > 60,000 lb:	0.00	0.00	0.00	100.00
Urban Bus	0.20	0.00	50.00	50.00
Motorcycle	1.60	50.00	50.00	0.00
School Bus	0.10	0.00	0.00	100.00
Motor Home	1.50	0.00	93.30	6.70

Travel Conditions

Travel Conditions						
		Residential			Commercia]	L
	Home-	Home-	Home-			
	Work	Shop	Other	Commute	Non-Work	Customer
Urban Trip Length (miles)	10.8	2.0	7.5	9.5	7.4	7.4
Rural Trip Length (miles)	16.8	7.1	7.9	14.7	6.6	6.6
Trip Speeds (mph)	35.0	35.0	35.0	35.0	35.0	35.0
% of Trips - Residential	32.9	18.0	49.1			
% of Trips - Commercial (by land	l use)				
Elementary school	•			20.0	10.0	70.0
City park				5.0	2.5	92.5
Regnl shop, center				2.0	1.0	97.0
General office building				35.0	17.5	47.5
Government office building	ı			10.0	5.0	85.0
General light industry				50.0	25.0	25.0

Page: 4 02/14/2007 9:54 AM

٠

Page: 5 02/14/2007 9:54 AM

MITIGATED OPERATIONAL EMISSIONS

	ROG	NOx	CO	S02	PM10
Single family housing	17.30	18.66	189.09	0.30	23.27
Apartments low rise	2.16	2.19	22.19	0.03	2.73
Retirement community	1.58	1.31	13.24	0.02	1.63
Elementary school	4.60	2.19	21.62	0.03	2.65
City park	0.19	0.11	1.04	0.00	0.13
Regnl shop. center	10.10	11.00	106.69	0.17	13.14
General office building	0.22	0.19	1.84	0.00	0.23
Goverment office building	7.30	7.75	76.26	0.12	9.13
General light industry	0.45	0.48	4.73	0.01	0.60
TOTAL EMISSIONS (tons/yr)	43.90	43.87	436.70	0.68	53.52
PERCENTAGE REDUCTION %	9	10	10	10	10

Includes correction for passby trips.

Does not include double counting adjustment for internal trips.

OPERATIONAL (Vehicle) EMISSION ESTIMATES

Analysis Year: 2020 Season: Annual

EMFAC Version: EMFAC2002 (9/2002)

Summary of Land Uses:

Unit Type	Acreage	Trip	Rate	No. Units	Total Trips
Single family housing	981.67		trips/dwelling unit	2,945.0028,	
Apartments low rise	31.25		trips/dwelling unit	500.00 3,	
Retirement community	128.00		trips/dwelling unit	640.00 2,	
Elementary school		1.29	trips/students	3,200.00 4,	128.00
City park		1.59	trips/acres	118.40	188.26
Regnl shop. center		42.94	trips/1000 sq. ft.	522.7222,	445.60
General office building		3.32	trips/1000 sq. ft.	87.12	289.24
Government office building		68.93	trips/1000 sq. ft.	239.5816,	514.25
General light industry		6.97	trips/1000 sq. ft.	96.92	675.53

Sum of Total Trips 78,248.92
Total Vehicle Miles Traveled 434,801.34

Vehicle Assumptions:

Fleet Mix:

Vehicle Type	Percent Type	Non-Catalyst	Catalyst	Diesel
Light Auto	54.40	0.40	99.40	0.20
Light Truck < 3,750 lbs	5 15.30	0.70	98.00	1.30
Light Truck 3,751- 5,750	16.40	0.60	98.80	0.60
Med Truck 5,751-8,500	7.30	0.00	98.60	1.40
Lite-Heavy 8,501-10,000	1.10	0.00	81.80	18.20
Lite-Heavy 10,001-14,000	0.30	0.00	66.70	33.30
Med-Heavy 14,001-33,000	1.00	0.00	20.00	80.00
Heavy-Heavy 33,001-60,000	0.80	0.00	0.00	100.00
Line Haul > 60,000 lbs	0.00	0.00	0.00	100.00
Urban Bus	0.20	0.00	50.00	50.00
Motorcycle	1.60	50.00	50.00	0.00
School Bus	0.10	0.00	0.00	100.00
Motor Home	1.50	0.00	93.30	6.70

Travel Conditions

Traver Conditions						
		Residential			Commercial	L
	Home-	Home-	Home-			
	Work	Shop	Other	Commute	Non-Work	Customer
Urban Trip Length (miles)	10.8	2.0	7.5	9.5	7.4	7.4
Rural Trip Length (miles)	16.8	7.1	7.9	14.7	6.6	6.6
Trip Speeds (mph)	35.0	35.0	35.0	35.0	35.0	35.0
% of Trips - Residential	32.9	18.0	49.1			
% of Trips - Commercial (bv land	l use)				
Elementary school	- 1			20.0	10.0	70.0
City park				5.0	2.5	92.5
Regnl shop, center				2.0	1.0	97.0
General office building				35.0	17.5	47.5
Goverment office building				10.0	5.0	85.0
-						

Page: 6 02/14/2007 9:54 AM

General light industry

50.0

25.0

25.0

Page: 7 02/14/2007 9:54 AM

MITIGATION OPTIONS SELECTED

Residential Mitigation Measures

Residential Mix of Uses Mitigation

Percent Reduction in Trips is 7.67% (calculated as a % of 9.57 trips/day)
Note that the above percent is applied to a baseline of 9.57 and that product is subtracted from the Unmitigated Trips
Inputs Selected:

The number of housing units within a 1/2 mile radius of the project, plus the number of residential units included in the project are 6578.

The employment for the study area (within a 1/2 mile radius of the project) is 7894.

Residential Local-Serving Retail Mitigation

Percent Reduction in Trips is 2% (calculated as a % of 9.57 trips/day)
Note that the above percent is applied to a baseline of 9.57 and that product is subtracted from the Unmitigated Trips
Inputs Selected:

The Presence of Local-Serving Retail checkbox was selected.

Non-Residential Mitigation Measures

Non-Residential Mix of Uses Mitigation

Percent Reduction in Trips is 7.67%

Inputs Selected:

The number of housing units within a 1/2 mile radius of the project, plus the number of residential units included in the project are 6578. The employment for the study area (within a 1/2 mile radius of the project) is 7894.

Non-Residential Local-Serving Retail Mitigation

Percent Reduction in Trips is 2%

Inputs Selected:

The Presence of Local-Serving Retail checkbox was selected.

Page: 8 02/14/2007 9:54 AM

Changes made to the default values for Land Use Trip Percentages

Changes made to the default values for Area

The area souce mitigation measure option switch changed from off to on. The natural gas single family usage rate changed from 6665.0 to 4094.1. The natural gas multi-family usage rate changed from 4011.5 to 2288.9. The wood stove percentage changed from 67 to 0. The natural gas fireplace percentage changed from 33 to 100. The landscape year changed from 2006 to 2020. The consumer product ROG pounds per person changed from 0.0171 to 0.0151.

Changes made to the default values for Operations

The mitigation option switch changed from off to on.

The operational emission year changed from 2006 to 2020.

The home based work selection item changed from 8 to 7.

The home based shopping selection item changed from 8 to 7.

The home based shopping urban trip length changed from 7.3 to 2.

The home based other selection item changed from 8 to 7.

The commercial based commute selection item changed from 8 to 7.

The commercial based non-work selection item changed from 8 to 7.

The commercial based customer selection item changed from 8 to 7.

The Res and Non-Res Mix of Uses Mitigation changed from off to on.

The Res and Non-Res Local-Serving Retail Mitigation changed from off to on.

Page: 1 02/14/2007 9:55 AM

URBEMIS 2002 For Windows 8.7.0

H:\ClientData\Castle and Cooke\Gateway Project Madera\GATEWAY AIR STUDY 8-17-06 (distrib Gateway Village Operations Non-Residential Template File Name:

Project Name: Project Location:

On-Road Motor Vehicle Emissions Based on EMFAC2002 version 2.2

SUMMARY REPORT (Tons/Year)

AREA SOURCE EMISSION ESTIMATE	S				
	ROG	NOx	CO	SO2	PM10
TOTALS (tpy, unmitigated)	45.78	8.25	15.73	0.07	0.05
TOTALS (tpy, mitigated)	45.78	8.25	15.73	0.07	0.05
OPERATIONAL (VEHICLE) EMISSIC	N ESTIMA	TES			
	ROG	NOx	CO	SO2	PM10
TOTALS (tpy, unmitigated)	71.22	78.16	736.37	0.83	65.48
TOTALS (tpy, mitigated)	64.80	70.02	659.58	0.74	58.65
SUM OF AREA AND OPERATIONAL E	MISSION :	ESTIMATES			
	ROG	NOx	CO	SO2	PM10
TOTALS (tpy, unmitigated)	116.99	86.41	752.11	0.90	65.54
TOTALS (tpy, mitigated)	110.58	78.26	675.31	0.82	58.71

Page: 2 02/14/2007 9:55 AM

URBEMIS 2002 For Windows 8.7.0

File Name: H:\ClientData\Castle and Cooke\Gateway Project Madera\GATEWAY AIR STUDY 8-17-06 (distrib

Project Name: Gateway Village Operations
Project Location: Non-Residential Template

On-Road Motor Vehicle Emissions Based on EMFAC2002 version 2.2

DETAIL REPORT (Tons/Year)

AREA SOURCE EMISSION ESTIMATES	(Tons	per Year,	Unmitigated)		
Source	ROG	NOx	CO	SO2	PM10
Natural Gas	0.61	8.06	4.26	0.00	0.02
Hearth	0.00	0.00	0.00	0.00	0.00
Landscaping	1.44	0.19	11.47	0.07	0.04
Consumer Prdcts	35.90	-	-	-	-
Architectural Coatings	7.82	-	-	-	-
TOTALS (tpy, unmitigated)	45.78	8.25	15.73	0.07	0.05
AREA SOURCE EMISSION ESTIMATES	(Tons	per Year,	Mitigated)		
AREA SOURCE EMISSION ESTIMATES Source	(Tons ROG	per Year, NOx	Mitigated) CO	S02	PM10
		~	-	SO2 0	PM10 0.02
Source	ROG	NOx	CO		
Source Natural Gas	ROG 0.61	NOx 8.06	CO 4.26	0	0.02
Source Natural Gas Hearth	ROG 0.61 0.00	NOx 8.06 0.00	CO 4.26 0.00	0.00	0.02
Source Natural Gas Hearth Landscaping Consumer Prdcts Architectural Coatings	ROG 0.61 0.00 1.44	NOx 8.06 0.00	CO 4.26 0.00	0.00	0.02
Source Natural Gas Hearth Landscaping Consumer Prdcts	ROG 0.61 0.00 1.44 35.90	NOx 8.06 0.00	CO 4.26 0.00	0.00	0.02

Area Source Mitigation Measures

Page: 3 02/14/2007 9:55 AM

UNMITIGATED OPERATIONAL EMISSIONS

	ROG	NOx	CO	SO2	PM10
Single family housing	28.81	33.77	323.21	0.37	28.87
Apartments low rise	3.56	3.99	38.20	0.04	3.41
Retirement community	2.90	2.86	27.39	0.03	2.45
Elementary school	6.24	3.54	33.11	0.04	2.94
City park	0.29	0.20	1.78	0.00	0.17
Regnl shop. center	16.53	19.27	177.07	0.20	15.80
General office building	0.48	0.45	4.21	0.00	0.39
Goverment office building	11.08	12.54	116.98	0.13	10.14
General light industry	1.33	1.54	14.42	0.02	1.33
TOTAL EMISSIONS (tons/yr)	71.22	78.16	736.37	0.83	65.48

Includes correction for passby trips.

Does not include double counting adjustment for internal trips.

OPERATIONAL (Vehicle) EMISSION ESTIMATES

Season: Annual Analysis Year: 2015

EMFAC Version: EMFAC2002 (9/2002)

Summary of Land Uses:

Unit Type	Acreage	Trip	Rate	No. Total Units Trips
Single family housing	1,098.00	9.57	trips/dwelling unit	3,294.0031,523.58
Apartments low rise	33.75	6.90	trips/dwelling unit	540.00 3,726.00
Retirement community	144.00	3.71	trips/dwelling unit	720.00 2,671.20
Elementary school		1.29	trips/students	3,200.00 4,128.00
City park		1.59	trips/acres	133.20 211.79
Regnl shop. center		42.94	trips/1000 sq. ft.	566.2824,316.06
General office building		3.32	trips/1000 sq ft.	130.68 433.86
Goverment office building	ng	68.93	trips/1000 sq. ft.	239.5816,514.25
General light industry	-	6.97	trips/1000 sq. ft.	193.84 1,351.06

Sum of Total Trips 84,875.80 Total Vehicle Miles Traveled 475,560.10

Vehicle Assumptions:

Fleet Mix:

Vehicle Type	Percent Type	Non-Catalyst	Catalyst	Diesel
Light Auto	54.40	0.40	99.40	0.20
Light Truck < 3,750 lbs	s 15.30	0.70	98.00	1.30
Light Truck 3,751- 5,750	0 16.40	0.60	98.80	0.60
Med Truck 5,751-8,500	7.30	0.00	98.60	1.40
Lite-Heavy 8,501-10,000	0 1.10	0.00	81.80	18.20
Lite-Heavy 10,001-14,000	0.30	0.00	66.70	33.30
Med-Heavy 14,001-33,000	0 1.00	0.00	20.00	80.00
Heavy-Heavy 33,001-60,000	0.80	0.00	0.00	100.00
Line Haul > 60,000 lb:	s 0.00	0.00	0.00	100.00
Urban Bus	0.20	0.00	50.00	50.00
Motorcycle	1.60	50.00	50.00	0.00
School Bus	0.10	0.00	0.00	100.00
Motor Home	1.50	0.00	93.30	6.70

Travel Condition

Travel Conditions						
		Residentia:	1		Commercial	
	Home-	Home-	Home-			
	Work	Shop	Other	Commute	Non-Work C	ustomer
Urban Trip Length (miles)	10.8	2.0	7.5	9.5	7.4	7.4
Rural Trip Length (miles)	16.8	7.1	7.9	14.7	6.6	6.6
Trip Speeds (mph)	35.0	35.0	35.0	35.0	35.0	35.0
<pre>% of Trips - Residential</pre>	32.9	18.0	49.1			
% of Trips - Commercial (hy land	use)				
Elementary school	2, 14114	4507		20.0	10.0	70.0
City park				5.0	2.5	92.5
Regnl shop, center				2.0	1.0	97.0
General office building				35.0	17.5	47.5
Goverment office building				10.0	5.0	85.0
General light industry				50.0	25.0	25.0

Page: 4 02/14/2007 9:55 AM

MITIGATED OPERATIONAL EMISSIONS

	ROG	Nox	CO	SO2	PM10
Single family housing	26.36	30.50	291.96	0.33	26.08
Apartments low rise	3.16	3.46	33.08	0.04	2.95
Retirement community	2.37	2.15	20.56	0.02	1.84
Elementary school	5.96	3.20	29.91	0.03	2.65
City park	0.27	0.18	1.61	0.00	0.15
Regnl shop. center	14.99	17.41	159.95	0.18	14.27
General office building	0.44	0.41	3.81	0.00	0.35
Goverment office building	10.03	11.33	105.67	0.12	9.16
General light industry	1.22	1.39	13.03	0.02	1.20
TOTAL EMISSIONS (tons/yr)	64.80	70.02	659.58	0.74	58.65
PERCENTAGE REDUCTION %	9	10	10	10	10

Includes correction for passby trips.

Does not include double counting adjustment for internal trips.

OPERATIONAL (Vehicle) EMISSION ESTIMATES

Analysis Year: 2015 Season: Annual

EMFAC Version: EMFAC2002 (9/2002)

Summary of Land Uses:

Unit Type	Acreage	Trip	Rate	No. Units	Total Trips
Single family housing Apartments low rise Retirement community Elementary school City park Regnl shop. center General office building Government office building General light industry	1,098.00 33.75 144.00	6.90 3.71 1.29 1.59 42.94 3.32 68.93	trips/dwelling un trips/dwelling un trips/students trips/acres trips/1000 sq. ft trips/1000 sq. ft trips/1000 sq. ft trips/1000 sq. ft	it 540.00 3 it 720.00 2 3,200.00 4 133.20 . 566.2824 . 130.68 . 239.5816	,726.00 ,671.20 ,128.00 211.79 ,316.06 433.86 ,514.25

Sum of Total Trips 84,875.80 Total Vehicle Miles Traveled 475,560.10

Vehicle Assumptions:

Fleet Mix:

Vehicle Type	Percent Type	Non-Catalyst	Catalyst	Diesel
Light Auto	54.40	0.40	99.40	0.20
Light Truck < 3,750 lb	s 15.30	0.70	98.00	1.30
Light Truck 3,751- 5,75	0 16.40	0.60	98.80	0.60
Med Truck 5,751-8,50	0 7.30	0.00	98.60	1.40
Lite-Heavy 8,501-10,00	0 1.10	0.00	81.80	18.20
Lite-Heavy 10,001-14,00	0 0.30	0.00	66.70	33.30
Med-Heavy 14,001-33,00	0 1.00	0.00	20.00	80.00
Heavy-Heavy 33,001-60,00	0.80	0.00	0.00	100.00
Line Haul > 60,000 lbs	s 0.00	0.00	0.00	100.00
Urban Bus	0.20	0.00	50.00	50.00
Motorcycle	1.60	50.00	50.00	0.00
School Bus	0.10	0.00	0.00	100.00
Motor Home	1.50	0.00	93.30	6.70

Travel Conditions

Traver Conditions						
		Residential			Commercial	l
	Home-	Home-	Home-			
	Work	Shop	Other	Commute	Non-Work	Customer
Urban Trip Length (miles)	10.8	2.0	7.5	9.5	7.4	7.4
Rural Trip Length (miles)	16.8	7.1	7.9	14.7	6.6	6.6
Trip Speeds (mph)	35.0	35.0	35.0	35.0	35.0	35.0
% of Trips - Residential	32.9	18.0	49.1			
% of Trips - Commercial (bv land	use)				
Elementary school	•	,		20.0	10.0	70.0
City park				5.0	2.5	92.5
Regnl shop. center				2.0	1.0	97.0
General office building				35.0	17.5	47.5
Goverment office building				10.0	5.0	85.0

Page: 6 02/14/2007 9:55 AM

General light industry

50.0 25.0

25.0

Page: 7 02/14/2007 9:55 AM

MITIGATION OPTIONS SELECTED

Residential Mitigation Measures

Residential Mix of Uses Mitigation

Percent Reduction in Trips is 7.67% (calculated as a % of 9.57 trips/day)
Note that the above percent is applied to a baseline of 9.57 and that product is subtracted from the Unmitigated Trips

Inputs Selected:

The number of housing units within a 1/2 mile radius of the project, plus the number of residential units included in the project are 6578. The employment for the study area (within a 1/2 mile radius of the project) is 7894.

Residential Local-Serving Retail Mitigation

Percent Reduction in Trips is 2% (calculated as a % of 9.57 trips/day)

Note that the above percent is applied to a baseline of 9.57 and that product is subtracted from the Unmitigated Trips

Inputs Selected:

The Presence of Local-Serving Retail checkbox was selected.

Non-Residential Mitigation Measures

Non-Residential Mix of Uses Mitigation

Percent Reduction in Trips is 7.67%

Inputs Selected:

The number of housing units within a 1/2 mile radius of the project, plus the number of residential units included in the project are 6578.

The employment for the study area (within a 1/2 mile radius of the project) is 7894.

Non-Residential Local-Serving Retail Mitigation

Percent Reduction in Trips is 2%

Inputs Selected:

The Presence of Local-Serving Retail checkbox was selected.

```
Page: 8
02/14/2007 9:55 AM

Changes made to the default values for Land Use Trip Percentages
```

Changes made to the default values for Area

The area souce mitigation measure option switch changed from off to on. The natural gas single family usage rate changed from 6665.0 to 4094.1. The natural gas multi-family usage rate changed from 4011.5 to 2288.9. The wood stove percentage changed from 67 to 0. The natural gas fireplace percentage changed from 33 to 100. The landscape year changed from 2006 to 2015.

The consumer product ROG pounds per person changed from 0.0171 to 0.0151.

Changes made to the default values for Operations

The mitigation option switch changed from off to on.
The operational emission year changed from 2006 to 2015.
The home based work selection item changed from 8 to 7.
The home based shopping selection item changed from 8 to 7.
The home based shopping urban trip length changed from 7.3 to 2.
The home based other selection item changed from 8 to 7.
The commercial based commute selection item changed from 8 to 7.
The commercial based non-work selection item changed from 8 to 7.
The commercial based customer selection item changed from 8 to 7.
The Res and Non-Res Mix of Uses Mitigation changed from off to on.
The Res and Non-Res Local-Serving Retail Mitigation changed from off to on.

Page: 1 02/14/2007 9:55 AM

URBEMIS 2002 For Windows 8.7.0

H:\ClientData\Castle and Cooke\Gateway Project Madera\GATEWAY AIR STUDY 8-17-06 (distrib Gateway Village Operations Non-Residential Template File Name:

Project Name:

Project Location: On-Road Motor Vehicle Emissions Based on EMFAC2002 version 2.2

SUMMARY REPORT (Tons/Year)

AREA SOURCE EMISSION ESTIMATE	S				
	ROG	NOx	CO	SO2	PM10
TOTALS (tpy, unmitigated)	45.78	8.25	15.73	0.07	0.05
TOTALS (tpy, mitigated)	45.78	8.25	15.73	0.07	0.05
OPERATIONAL (VEHICLE) EMISSION		ATES			
	ROG	NOx	CO	SO2	PM10
TOTALS (tpy, unmitigated)	52.40	53.49	532.78	0.83	65.34
TOTALS (tpy, mitigated)	47.75	47.92	477.21	0.74	58.52
SUM OF AREA AND OPERATIONAL E	MISSION	ESTIMATES			
	ROG	NOx	CO	SO2	PM10
TOTALS (tpy, unmitigated)	98.17	61.74	548.51	0.90	65.39
TOTALS (tpy, mitigated)	93.53	56.17	492.94	0.81	58.57

Page: 2 02/14/2007 9:55 AM

URBEMIS 2002 For Windows 8.7.0

File Name: H:\ClientData\Castle and Cooke\Gateway Project Madera\GATEWAY AIR STUDY 8-17-06 (distrib Project Name: Gateway Village Operations Project Location: Non-Residential Template

On-Road Motor Vehicle Emissions Based on EMFAC2002 version 2.2

DETAIL REPORT (Tons/Year)

AREA SOURCE EMISSION ESTIMATES Source Natural Gas Hearth	(Tons ROG 0.61 0.00	per Year, NOx 8.06 0.00	Unmitigated) CO 4.26 0.00	SO2 0.00 0.00	PM10 0.02 0.00
Landscaping	1.44	0.19	11.47	0.07	0.04
Consumer Prdcts	35.90	-	-	-	-
Architectural Coatings	7.82	-	-	-	-
TOTALS (tpy, unmitigated)	45.78	8.25	15.73	0.07	0.05
AREA SOURCE EMISSION ESTIMATES			Mitigated)		
Source	ROG	NOx	CO	S02	PM10
Natural Gas	0.61	8.06	4.26	0	0.02
Hearth	0.00	0.00	0.00	0.00	0.00
Landscaping	1.44	0.19	11.47	0.07	0.04
Consumer Prdcts	35.90	-	-	-	-
Architectural Coatings	7.82	_	-	-	-
TOTALS (tpy, mitigated)	45.78	8.25	15.73	0.07	0.05

Area Source Mitigation Measures

Page: 3 02/14/2007 9:55 AM

UNMITIGATED OPERATIONAL EMISSIONS

	ROG	NOx	CO	S02	PM10
Single family housing	21.13	23.11	234.14	0.37	28.81
Apartments low rise	2.62	2.73	27.67	0.04	3.40
Retirement community	2.16	1.96	19.84	0.03	2.44
Elementary school	4.80	2.43	23.94	0.04	2.93
City park	0.22	0.13	1.29	0.00	0.17
Regnl shop. center	12.06	13.19	127.95	0.20	15.76
General office building	0.36	0.31	3.06	0.00	0.39
Goverment office building	8.06	8.58	84.42	0.13	10.11
General light industry	0.98	1.05	10.47	0.02	1.33
TOTAL EMISSIONS (tons/yr)	52.40	53.49	532.78	0.83	65.34

Includes correction for passby trips. Does not include double counting adjustment for internal trips.

OPERATIONAL (Vehicle) EMISSION ESTIMATES

Analysis Year: 2020 Season: Annual

EMFAC Version: EMFAC2002 (9/2002)

Summary of Land Uses:

Unit Type	Acreage	Trip	Rate	No. Total Units Trips
Single family housing Apartments low rise Retirement community Elementary school City park Regnl shop. center General office building Government office building General light industry	1,098.00 33.75 144.00	6.90 3.71 1.29 1.59 42.94 3.32 68.93	trips/dwelling unit trips/dwelling unit trips/dwelling unit trips/students trips/acres trips/1000 sq. ft. trips/1000 sq. ft. trips/1000 sq. ft.	540.00 3,726.00

Sum of Total Trips 84,875.80 Total Vehicle Miles Traveled 475,560.10

Vehicle Assumptions:

Fleet Mix:

Vehicle Type	Percent Type	Non-Catalyst	Catalyst	Diesel
Light Auto	54.40	0.40	99.40	0.20
Light Truck < 3,750 lb	s 15.30	0.70	98.00	1.30
Light Truck 3,751- 5,75	0 16.40	0.60	98.80	0.60
Med Truck 5,751- 8,50	0 7.30	0.00	98.60	1.40
Lite-Heavy 8,501-10,00	0 1.10	0.00	81.80	18.20
Lite-Heavy 10,001-14,00	0 0.30	0.00	66.70	33.30
Med-Heavy 14,001-33,00	0 1.00	0.00	20.00	80.00
Heavy-Heavy 33,001-60,00	0 0.80	0.00	0.00	100.00
Line Haul > 60,000 lb	s 0.00	0.00	0.00	100.00
Urban Bus	0.20	0.00	50.00	50.00
Motorcycle	1.60	50.00	50.00	0.00
School Bus	0.10	0.00	0.00	100.00
Motor Home	1.50	0.00	93.30	6.70

Travel Conditions

		Residential			Commercial	L
	Home-	Home-	Home-			
	Work	Shop	Other	Commute	Non-Work	Customer
Urban Trip Length (miles)	10.8	2.0	7.5	9.5	7.4	7.4
Rural Trip Length (miles)	16.8	7.1	7.9	14.7	6.6	6.6
Trip Speeds (mph)	35.0	35.0	35.0	35.0	35.0	35.0
% of Trips - Residential	32.9	18.0	49.1			
% of Trips - Commercial (by land	use)				
Elementary school				20.0	10.0	70.0
City park				5.0	2.5	92.5
Regnl shop. center				2.0	1.0	97.0
General office building				35.0	17.5	47.5
Goverment office building				10.0	5.0	85.0
General light industry				50.0	25.0	25.0

Page: 4 02/14/2007 9:55 AM

MITIGATED OPERATIONAL EMISSIONS

	ROG	NOx	CO	SO2	PM10
Single family housing	19.36	20.88	211.50	0.33	26.02
Apartments low rise	2.33	2.37	23.96	0.04	2.95
Retirement community	1.77	1.47	14.89	0.02	1.83
Elementary school	4.60	2.19	21.62	0.03	2.65
City park	0.21	0.12	1.17	0.00	0.15
Regnl shop. center	10.94	11.92	115.58	0.18	14.24
General office building	0.33	0.28	2.76	0.00	0.35
Goverment office building	7.30	7.75	76.26	0.12	9.13
General light industry	0.90	0.95	9.45	0.02	1.20
TOTAL EMISSIONS (tons/yr)	47.75	47.92	477.21	0.74	58.52
PERCENTAGE REDUCTION %	9	10	10	10	10

Includes correction for passby trips.

Does not include double counting adjustment for internal trips.

OPERATIONAL (Vehicle) EMISSION ESTIMATES

Analysis Year: 2020 Season: Annual

EMFAC Version: EMFAC2002 (9/2002)

Summary of Land Uses:

Unit Type	Acreage	Trip	Rate		No. Units	Total Trips
Single family housing Apartments low rise	1,098.00	6.90	trips/dwell	ling unit	540.00 3	,726.00
Retirement community Elementary school	144.00		trips/dwell trips/stude		720.00 2 3,200.00 4	
City park			trips/acres		133.20	
Regnl shop. center			trips/1000		566.2824	
General office building			trips/1000		130.68	
Goverment office building	J		trips/1000		239.5816	,514.25
General light industry		6.97	trips/1000	sq. ft.	193.84 1	,351.06

Sum of Total Trips 84,875.80 Total Vehicle Miles Traveled 475,560.10

Vehicle Assumptions:

Fleet Mix:

Vehicle Type	Percent Type	Non-Catalyst	Catalyst	Diesel
Light Auto	54.40	0.40	99.40	0.20
Light Truck < 3,750 lbs	15.30	0.70	98.00	1.30
Light Truck 3,751- 5,750	16.40	0.60	98.80	0.60
Med Truck 5,751-8,500	7.30	0.00	98.60	1.40
Lite-Heavy 8,501-10,000	1.10	0.00	81.80	18.20
Lite-Heavy 10,001-14,000	0.30	0.00	66.70	33.30
Med-Heavy 14,001-33,000	1.00	0.00	20.00	80.00
Heavy-Heavy 33,001-60,000	0.80	0.00	0.00	100.00
Line Haul > 60,000 lbs	0.00	0.00	0.00	100.00
Urban Bus	0.20	0.00	50.00	50.00
Motorcycle	1.60	50.00	50.00	0.00
School Bus	0.10	0.00	0.00	100.00
Motor Home	1.50	0.00	93.30	6.70

Travel Conditions

Traver conditions						
		Residential			Commercial	
	Home-	Home-	Home-			
	Work	Shop	Other	Commute	Non-Work (Customer
Urban Trip Length (miles)	10.8	2.0	7.5	9.5	7.4	7.4
Rural Trip Length (miles)	16.8	7.1	7.9	14.7	6.6	6.6
Trip Speeds (mph)	35.0	35.0	35.0	35.0	35.0	35.0
% of Trips - Residential	32.9	18.0	49.1			
% of Trips - Commercial (by land	use)				
Elementary school	-			20.0	10.0	70.0
City park				5.0	2.5	92.5
Regnl shop. center				2.0	1.0	97.0
General office building				35.0	17.5	47.5
Goverment office building				10.0	5.0	85.0

Page: 6 02/14/2007 9:55 AM

General light industry

50.0 25.0 25.0

Page: 7 02/14/2007 9:55 AM

MITIGATION OPTIONS SELECTED

Residential Mitigation Measures

Residential Mix of Uses Mitigation

Percent Reduction in Trips is 7.67% (calculated as a % of 9.57 trips/day)
Note that the above percent is applied to a baseline of 9.57 and that product is subtracted from the Unmitigated Trips

Inputs Selected:

The number of housing units within a 1/2 mile radius of the project, plus the number of residential units included in the project are 6578.

The employment for the study area (within a 1/2 mile radius of the project) is 7894.

Residential Local-Serving Retail Mitigation

Percent Reduction in Trips is 2% (calculated as a % of 9.57 trips/day)
Note that the above percent is applied to a baseline of 9.57 and that product is subtracted from the Unmitigated Trips
Inputs Selected:

The Presence of Local-Serving Retail checkbox was selected.

Non-Residential Mitigation Measures

Non-Residential Mix of Uses Mitigation

Percent Reduction in Trips is 7.67%

Inputs Selected:

The number of housing units within a 1/2 mile radius of the project, plus the number of residential units included in the project are 6578.

The employment for the study area (within a 1/2 mile radius of the project) is 7894.

Non-Residential Local-Serving Retail Mitigation

Percent Reduction in Trips is 2%

Inputs Selected:

The Presence of Local-Serving Retail checkbox was selected.

```
Page: 8
02/14/2007 9:55 AM
```

Changes made to the default values for Land Use Trip Percentages

Changes made to the default values for Area

```
The area souce mitigation measure option switch changed from off to on. The natural gas single family usage rate changed from 6665.0 to 4094.1. The natural gas multi-family usage rate changed from 4011.5 to 2288.9. The wood stove percentage changed from 67 to 0. The natural gas fireplace percentage changed from 33 to 100. The landscape year changed from 2006 to 2020. The consumer product ROG pounds per person changed from 0.0171 to 0.0151.
```

Changes made to the default values for Operations

```
The mitigation option switch changed from off to on.
The operational emission year changed from 2006 to 2020.
The home based work selection item changed from 8 to 7.
The home based shopping selection item changed from 8 to 7.
The home based shopping urban trip length changed from 7.3 to 2.
The home based other selection item changed from 8 to 7.
The commercial based commute selection item changed from 8 to 7.
The commercial based non-work selection item changed from 8 to 7.
The commercial based customer selection item changed from 8 to 7.
The Res and Non-Res Mix of Uses Mitigation changed from off to on.
The Res and Non-Res Local-Serving Retail Mitigation changed from off to on.
```

Page: 1 02/14/2007 9:58 AM

URBEMIS 2002 For Windows 8.7.0

File Name:

H:\ClientData\Castle and Cooke\Gateway Project Madera\GATEWAY AIR STUDY 8-17-06 (distrib

Project Name: Gateway Village Operations
Project Location: Non-Residential Template
On-Road Motor Vehicle Emissions Based on EMFAC2002 version 2.2

SUMMARY REPORT (Tons/Year)

AREA SOURCE EMISSION ESTIMAT	E.C	

		ROG	NOx	CO	S02	PM10
TOTALS (tpy,	unmitigated)	52.25	9.31	17.63	0.08	0.06
TOTALS (tpy,	mitigated)	52.25	9.31	17.63	0.08	0.06

OPERATIONAL (VEHICLE) EMISSION ESTIMATES

		ROG	NOX	CO	SO2	PMIO
TOTALS (tpy,	unmitigated)	79.48	87.60	825.26	0.93	73.45
TOTALS (tpy,	mitigated)	72.25	78.41	738.57	0.83	65.73

SUM OF AREA AND OPERATIONAL EMISSION ESTIMATES

			ROG	NOx	CO	SO2	PM10
TOTALS	(tpy,	unmitigated)	131.72	96.90	842.89	1.01	73.51
TOTALS	(tpy,	mitigated)	124.50	87.71	756.20	0.92	65.79

Page: 2 02/14/2007 9:58 AM

URBEMIS 2002 For Windows 8.7.0

H:\ClientData\Castle and Cooke\Gateway Project Madera\GATEWAY AIR STUDY 8-17-06 (distrib File Name:

Gateway Village Operations Non-Residential Template Project Name: Project Location: On-Road Motor Vehicle Emissions Based on EMFAC2002 version 2.2

> DETAIL REPORT (Tons/Year)

AREA SOURCE EMISSION ESTIMATES	(Tons	per Year,	Unmitigated)	•	
Source	ROG	NOx	CO	S02	PM10
Natural Gas	0.69	9.10	4.79	0.00	0.02
Hearth	0.00	0.00	0.00	0.00	0.00
Landscaping	1.61	0.21	12.84	0.08	0.04
Consumer Prdcts	41.02	-	-	-	-
Architectural Coatings	8.92	-	-	-	-
TOTALS (tpy, unmitigated)	52.25	9.31	17.63	0.08	0.06
AREA SOURCE EMISSION ESTIMATES	(Tons	per Year,	Mitigated)		
AREA SOURCE EMISSION ESTIMATES Source	(Tons ROG	per Year, NOx	Mitigated) CO	S02	PM10
		-	-	0	0.02
Source	ROG	NOx	CO		
Source Natural Gas	ROG 0.69	NOx 9.10	CO 4.79	0	0.02
Source Natural Gas Hearth	ROG 0.69 0.00	NOx 9.10 0.00	CO 4.79 0.00	0.00	0.02 0.00
Source Natural Gas Hearth Landscaping	ROG 0.69 0.00 1.61	NOx 9.10 0.00	CO 4.79 0.00	0.00	0.02 0.00

Area Source Mitigation Measures

Page: 3 02/14/2007 9:58 AM

UNMITIGATED OPERATIONAL EMISSIONS

	ROG	NOx	CO	SO2	PM10
Single family housing	32.12	37.58	359.75	0.41	32.13
Apartments low rise	4.55	5.10	48.81	0.06	4.36
Retirement community	3.22	3.18	30.43	0.03	2.72
Elementary school	6.24	3.54	33.11	0.04	2.94
City park	0.32	0.22	1.98	0.00	0.18
Regnl shop. center	19.33	22.53	207.04	0.23	18.47
General office building	0.62	0.59	5.53	0.01	0.51
Goverment office building	11.08	12.54	116.98	0.13	10.14
General light industry	1.99	2.31	21.64	0.03	2.00
TOTAL EMISSIONS (tons/yr)	79.48	87.60	825.26	0.93	73.45

Includes correction for passby trips.

Does not include double counting adjustment for internal trips.

OPERATIONAL (Vehicle) EMISSION ESTIMATES

Analysis Year: 2015 Season: Annual

EMFAC Version: EMFAC2002 (9/2002)

Summary of Land Uses:

Unit Type	Acreage	Trip	Rate		No. Units	Total Trips
Single family housing Apartments low rise Retirement community Elementary school City park Regnl shop. center General office building Government office building General light industry	1,141.00 43.13 160.00	6.90 3.71 1.29 1.59 42.94 3.32 68.93	trips/dwelling trips/dwelling trips/dwelling trips/students trips/acres trips/1000 sq. trips/1000 sq. trips/1000 sq. trips/1000 sq.	unit unit ft. ft. ft.	3,713.0035, 690.00 4, 800.00 2, 3,200.00 4, 148.00 662.1128, 171.30 239.5816, 290.76 2,	761.00 968.00 128.00 235.32 431.00 568.72 514.25
		3.37	bu.		,	

Sum of Total Trips 94,720.74
Total Vehicle Miles Traveled 533,389.68

Vehicle Assumptions:

Fleet Mix:

Vehicle Type	Percent Type	Non-Catalyst	Catalyst	Diesel
Light Auto	54.40	0.40	99.40	0.20
Light Truck < 3,750 lbs	15.30	0.70	98.00	1.30
Light Truck 3,751- 5,750	16.40	0.60	98.80	0.60
Med Truck 5,751-8,500	7.30	0.00	98.60	1.40
Lite-Heavy 8,501-10,000	1.10	0.00	81.80	18.20
Lite-Heavy 10,001-14,000	0.30	0.00	66.70	33.30
Med-Heavy 14,001-33,000	1.00	0.00	20.00	80.00
Heavy-Heavy 33,001-60,000	0.80	0.00	0.00	100.00
Line Haul > 60,000 lbs	0.00	0.00	0.00	100.00
Urban Bus	0.20	0.00	50.00	50.00
Motorcycle	1.60	50.00	50.00	0.00
School Bus	0.10	0.00	0.00	100.00
Motor Home	1.50	0.00	93.30	6.70

Travel Conditions						
		Residential			Commercial	L
	Home-	Home-	Home-			
	Work	Shop	Other	Commute	Non-Work	Customer
Urban Trip Length (miles)	10.8	2.0	7.5	9.5	7.4	7.4
Rural Trip Length (miles)	16.8	7.1	7.9	14.7	6.6	6.6
Trip Speeds (mph)	35.0	35.0	35.0	35.0	35.0	35.0
% of Trips - Residential	32.9	18.0	49.1			
% of Trips - Commercial (by land	use)				
Elementary school	- 2	,		20.0	10.0	70.0
City park				5.0	2.5	92.5
Regnl shop. center				2.0	1.0	97.0
General office building				35.0	17.5	47.5
Goverment office building				10.0	5.0	85.0
General light industry				50.0	25.0	25.0

Page: 4 02/14/2007 9:58 AM •

*

MITIGATED OPERATIONAL EMISSIONS

	ROG	NOx	CO	SO2	PM10
Single family housing	29.35	33.90	324.53	0.37	28.99
Apartments low rise	4.04	4.42	42.27	0.05	3.78
Retirement community	2.63	2.39	22.84	0.03	2.04
Elementary school	5.96	3.20	29.91	0.03	2.65
City park	0.30	0.20	1.79	0.00	0.17
Regnl shop. center	17.53	20.36	187.02	0.21	16.69
General office building	0.58	0.54	4.99	0.01	0.46
Goverment office building	10.03	11.33	105.67	0.12	9.16
General light industry	1.83	2.08	19.54	0.02	1.80
TOTAL EMISSIONS (tons/yr)	72.25	78.41	738.57	0.83	65.73
PERCENTAGE REDUCTION %	9	10	11	11	11

Includes correction for passby trips.

Does not include double counting adjustment for internal trips.

OPERATIONAL (Vehicle) EMISSION ESTIMATES

Season: Annual Analysis Year: 2015

EMFAC Version: EMFAC2002 (9/2002)

Summary of Land Uses:

Unit Type	Acreage	Trip	Rate		otal rips
Single family housing Apartments low rise Retirement community Elementary school City park Regnl shop. center General office building Goverment office building		6.90 3.71 1.29 1.59 42.94 3.32	trips/dwelling unit trips/dwelling unit trips/dwelling unit trips/students trips/acres trips/1000 sq. ft. trips/1000 sq. ft. trips/1000 sq. ft.	690.00 4,761	1.00 3.00 3.00 5.32 1.00 3.72
General light industry		6.97	trips/1000 sq. ft.	290.76 2,026	5.60

Sum of Total Trips 94,720.74 Total Vehicle Miles Traveled 533,389.68

Vehicle Assumptions:

Fleet Mix:

Vehicle Type	Percent Type	Non-Catalyst	Catalyst	Diesel
Light Auto	54.40	0.40	99.40	0.20
Light Truck < 3,750 lbs	15.30	0.70	98.00	1.30
Light Truck 3,751- 5,750	16.40	0.60	98.80	0.60
Med Truck 5,751-8,500	7.30	0.00	98.60	1.40
Lite-Heavy 8,501-10,000	1.10	0.00	81.80	18.20
Lite-Heavy 10,001-14,000	0.30	0.00	66.70	33.30
Med-Heavy 14,001-33,000	1.00	0.00	20.00	80.00
Heavy-Heavy 33,001-60,000	0.80	0.00	0.00	100.00
Line Haul > 60,000 lbs	0.00	0.00	0.00	100.00
Urban Bus	0.20	0.00	50.00	50.00
Motorcycle	1.60	50.00	50.00	0.00
School Bus	0.10	0.00	0.00	100.00
Motor Home	1.50	0.00	93.30	6.70

Travel Conditions

Traver conditions						
		Residential			Commercial	
	Home-	Home-	Home-			
	Work	Shop	Other	Commute	Non-Work (Customer
Urban Trip Length (miles)	10.8	2.0	7.5	9.5	7.4	7.4
Rural Trip Length (miles)	16.8	7.1	7.9	14.7	6.6	6.6
Trip Speeds (mph)	35.0	35.0	35.0	35.0	35.0	35.0
% of Trips - Residential	32.9	18.0	49.1			
% of Trips - Commercial (by land	l use)				
Elementary school	•	·		20.0	10.0	70.0
City park				5.0	2.5	92.5
Regnl shop. center				2.0	1.0	97.0
General office building				35.0	17.5	47.5
Goverment office building				10.0	5.0	85.0

Page: 6 02/14/2007 9:58 AM

General light industry

50.0

25.0

25.0

Page: 7 02/14/2007 9:58 AM

MITIGATION OPTIONS SELECTED

Residential Mitigation Measures

Residential Mix of Uses Mitigation

Percent Reduction in Trips is 7.67% (calculated as a % of 9.57 trips/day)
Note that the above percent is applied to a baseline of 9.57 and that product is subtracted from the Unmitigated Trips

Inputs Selected:
The number of housing units within a 1/2 mile radius of the project, plus the

number of residential units included in the project are 6578.

The employment for the study area (within a 1/2 mile radius of the project) is 7894.

Residential Local-Serving Retail Mitigation

Percent Reduction in Trips is 2% (calculated as a % of 9.57 trips/day)

Note that the above percent is applied to a baseline of 9.57 and that product is subtracted from the Unmitigated Trips
Inputs Selected:

The Presence of Local-Serving Retail checkbox was selected.

Non-Residential Mitigation Measures

Non-Residential Mix of Uses Mitigation

Percent Reduction in Trips is 7.67%

Inputs Selected:

The number of housing units within a 1/2 mile radius of the project, plus the number of residential units included in the project are 6578.

The employment for the study area (within a 1/2 mile radius of the project) is 7894.

Non-Residential Local-Serving Retail Mitigation

Percent Reduction in Trips is 2%

Inputs Selected:

The Presence of Local-Serving Retail checkbox was selected.

Page: 8 02/14/2007 9:58 AM

Changes made to the default values for Land Use Trip Percentages

The Trip Rate and/or Acreage values for Single family housing have changed from the defaults 9.57/1237.67 to 9.45/1141

Changes made to the default values for Area

The area souce mitigation measure option switch changed from off to on. The natural gas single family usage rate changed from 6665.0 to 4094.1. The natural gas multi-family usage rate changed from 4011.5 to 2288.9. The wood stove percentage changed from 67 to 0. The natural gas fireplace percentage changed from 33 to 100. The landscape year changed from 2006 to 2015. The consumer product ROG pounds per person changed from 0.0171 to 0.0151.

Changes made to the default values for Operations

The mitigation option switch changed from off to on.
The operational emission year changed from 2006 to 2015.
The home based work selection item changed from 8 to 7.
The home based shopping selection item changed from 8 to 7.
The home based shopping urban trip length changed from 7.3 to 2.
The home based other selection item changed from 8 to 7.
The commercial based commute selection item changed from 8 to 7.
The commercial based non-work selection item changed from 8 to 7.
The commercial based customer selection item changed from 8 to 7.
The Res and Non-Res Mix of Uses Mitigation changed from off to on.
The Res and Non-Res Local-Serving Retail Mitigation changed from off to on.

Page: 1

02/14/2007 9:59 AM

URBEMIS 2002 For Windows 8.7.0

File Name: H:\ClientData\Castle and Cooke\Gateway Project Madera\GATEWAY AIR STUDY 8-17-06 (distrib

Project Name: Gateway Village Operations
Project Location: Non-Residential Template
On-Road Motor Vehicle Emissions Based on EMFAC2002 version 2.2

SUMMARY REPORT (Tons/Year)

AREA SOURCE EMISSION ESTIMATE	s				
	ROG	NOx	CO	S02	PM10
TOTALS (tpy, unmitigated)	52.25	9.31	17.63	0.08	0.06
TOTALS (tpy, mitigated)	52.25	9.31	17.63	0.08	0.06
TOTALS (tpy, mittigated)	32.23	9.31	17.03	0.08	0.06
OPERATIONAL (VEHICLE) EMISSIO	N ESTIMAT	ES			
	ROG	NOx	CO	SO2	PM10
TOTALS (tpy, unmitigated)	58.46	59.95	597.12	0.93	73.28
TOTALS (tpy, mitigated)	53.23	53.66	534.39	0.83	65.58
TOTALS (cpy, micigated)	33.23	33.00	334.33	0.03	05.50
SUM OF AREA AND OPERATIONAL E	MISSION E	STIMATES			
	ROG	NOx	CO	SO2	PM10
TOTALS (tpy, unmitigated)	110.71	69.26	614.75	1.01	73.34
TOTALS (tpy, mitigated)	105.47	62.97	552.02	0.91	65.64
TOTALS (tpy, mitigated)	105.47	62.97	552.02	0.91	65.64

Page: 2 02/14/2007 9:59 AM

URBEMIS 2002 For Windows 8.7.0

H:\ClientData\Castle and Cooke\Gateway Project Madera\GATEWAY AIR STUDY 8-17-06 (distrib Gateway Village Operations Non-Residential Template File Name: Project Name:

Project Location: On-Road Motor Vehicle Emissions Based on EMFAC2002 version 2.2

> DETAIL REPORT (Tons/Year)

AREA SOURCE EMISSION ESTIMATES	(Tons	per Year,	Unmitigated)		
Source	ROG	NOx	CO	SO2	PM10
Natural Gas	0.69	9.10	4.79	0.00	0.02
Hearth	0.00	0.00	0.00	0.00	0.00
Landscaping	1.61	0.21	12.84	0.08	0.04
Consumer Prdcts	41.02	-	-	-	_
Architectural Coatings	8.92	-	-	-	_
TOTALS (tpy, unmitigated)	52.25	9.31	17.63	0.08	0.06
AREA SOURCE EMISSION ESTIMATES	(Tons	per Year,	Mitigated)		
Source	ROG	NOx	CO	SO2	PM10
Natural Gas	0.69	9.10	4.79	0	0.02
Hearth	0.00	0.00	0.00	0.00	0.00
Landscaping	1.61	0.21	12.84	0.08	0.04
Consumer Prdcts	41.02	-	-	-	-
Architectural Coatings	8.92	-	-	-	-
TOTALS (tpy, mitigated)	52.25	9.31	17.63	0.08	0.06

Area Source Mitigation Measures

Page: 3 02/14/2007 9:59 AM

UNMITIGATED OPERATIONAL EMISSIONS

	ROG	xON	CO	SO2	PM10
Single family housing	23.56	25.72	260.61	0.41	32.06
Apartments low rise	3.35	3.49	35.36	0.06	4.35
Retirement community	2.40	2.18	22.04	0.03	2.71
Elementary school	4.80	2.43	23.94	0.04	2.93
City park	0.25	0.15	1.44	0.00	0.18
Regnl shop. center	14.10	15.42	149.61	0.23	18.43
General office building	0.47	0.41	4.01	0.01	0.51
Government office building	8.06	8.58	84.42	0.13	10.11
General light industry	1.47	1.58	15.70	0.03	1.99
TOTAL EMISSIONS (tons/yr)	58.46	59.95	597.12	0.93	73.28

Includes correction for passby trips.

Does not include double counting adjustment for internal trips.

OPERATIONAL (Vehicle) EMISSION ESTIMATES

Analysis Year: 2020 Season: Annual

EMFAC Version: EMFAC2002 (9/2002)

Summary of Land Uses:

Acreage	Trip	Rate	No. Units	Total Trips
1,141.00	9.45	trips/dwelling un	it 3,713.0035	5,087.85
43.13	6.90	trips/dwelling un	it 690.00 4	1,761.00
160.00	3.71	trips/dwelling un	it 800.00 2	2,968.00
	1.29	trips/students	3,200.00 4	1,128.00
	1.59	trips/acres	148.00	235.32
	42.94	trips/1000 sq. ft	. 662.1128	3,431.00
	3.32	trips/1000 sq. ft	. 171.30	568.72
ıg	68.93	trips/1000 sq. ft	. 239.5816	5,514.25
	6.97	trips/1000 sq. ft	. 290.76 2	2,026.60
	1,141.00 43.13	1,141.00 9.45 43.13 6.90 160.00 3.71 1.29 1.59 42.94 3.32 ng 68.93	1,141.00 9.45 trips/dwelling un 43.13 6.90 trips/dwelling un 160.00 3.71 trips/dwelling un 1.29 trips/students 1.59 trips/acres 42.94 trips/1000 sq. ft 3.32 trips/1000 sq. ft 68.93 trips/1000 sq. ft	1,141.00 9.45 trips/dwelling unit 3,713.0035 43.13 6.90 trips/dwelling unit 690.00 4 160.00 3.71 trips/dwelling unit 800.00 2 1.29 trips/students 3,200.00 4 1.59 trips/acres 148.00 42.94 trips/1000 sq. ft. 662.1128 3.32 trips/1000 sq. ft. 171.30 ag 68.93 trips/1000 sq. ft. 239.5816

Sum of Total Trips 94,720.74
Total Vehicle Miles Traveled 533,389.68

Vehicle Assumptions:

Fleet Mix:

Vehicle Type	Percent Type	Non-Catalyst	Catalyst	Diesel
Light Auto	54.40	0.40	99.40	0.20
Light Truck < 3,750 lbs	15.30	0.70	98.00	1.30
Light Truck 3,751- 5,750	16.40	0.60	98.80	0.60
Med Truck 5,751-8,500	7.30	0.00	98.60	1.40
Lite-Heavy 8,501-10,000	1.10	0.00	81.80	18.20
Lite-Heavy 10,001-14,000	0.30	0.00	66.70	33.30
Med-Heavy 14,001-33,000	1.00	0.00	20.00	80.00
Heavy-Heavy 33,001-60,000	0.80	0 - 00	0.00	100.00
Line Haul > 60,000 lbs	0.00	0.00	0.00	100.00
Urban Bus	0.20	0.00	50.00	50.00
Motorcycle	1.60	50.00	50.00	0.00
School Bus	0.10	0.00	0.00	100.00
Motor Home	1.50	0.00	93.30	6.70

Traver Conditions						
	Residential			Commercial		
:Home	- Home-	Home-				
Work	Shop	Other	Commute	Non-Work	Customer	
Urban Trip Length (miles) 10.8	2.0	7.5	9.5	7.4	7.4	
Rural Trip Length (miles) 16.8	7.1	7.9	14.7	6.6	6.6	
Trip Speeds (mph) 35.0	35.0	35.0	35.0	35.0	35.0	
% of Trips - Residential 32.9	18.0	49.1				
% of Trips - Commercial (by la	nd use)					
Elementary school			20.0	10.0	70.0	
City park			5.0	2.5	92.5	
Regnl shop, center			2.0	1.0	97.0	
General office building			35.0	17.5	47.5	
Goverment office building			10.0	5.0	85.0	
General light industry			50.0	25.0	25.0	

Page: 4 02/14/2007 9:59 AM Page: 5 02/14/2007 9:59 AM

MITIGATED OPERATIONAL EMISSIONS

	ROG	NOx	CO	SO2	PM10
Single family housing	21.56	23.20	235.10	0.37	28.93
Apartments low rise	2.98	3.02	30.62	0.05	3.77
Retirement community	1.97	1.63	16.55	0.03	2.04
Elementary school	4.60	2.19	21.62	0.03	2.65
City park	0.23	0.13	1.30	0.00	0.17
Regnl shop. center	12.79	13.93	135.14	0.21	16.65
General office building	0.44	0.37	3.62	0.01	0.46
Goverment office building	7.30	7.75	76.26	0.12	9.13
General light industry	1.35	1.43	14.18	0.02	1.80
TOTAL EMISSIONS (tons/yr)	53.23	53.66	534.39	0.83	65.58
PERCENTAGE REDUCTION %	9	10	11	11	11

Includes correction for passby trips. Does not include double counting adjustment for internal trips.

OPERATIONAL (Vehicle) EMISSION ESTIMATES

Analysis Year: 2020 Season: Annual

EMFAC Version: EMFAC2002 (9/2002)

Summary of Land Uses:

Unit Type	Acreage	Trip	Rate	No. Units	Total Trips
Single family housing	1,141.00	9.45	trips/dwelling unit	3,713.0035	,087.85
Apartments low rise	43.13	6.90	trips/dwelling unit	690.00 4	,761.00
Retirement community	160.00	3.71	trips/dwelling unit	800.00 2	,968.00
Elementary school		1.29	trips/students	3,200.00 4	,128.00
City park		1.59	trips/acres	148.00	235.32
Regnl shop. center		42.94	trips/1000 sq. ft.	662.1128	,431.00
General office building		3.32	trips/1000 sq. ft.	171.30	568.72
Goverment office buildi	ng	68.93	trips/1000 sq. ft.	239.5816	,514.25
General light industry		6.97	trips/1000 sq. ft.	290.76 2	,026.60

Sum of Total Trips 94,720.74
Total Vehicle Miles Traveled 533,389.68

Vehicle Assumptions:

Fleet Mix:

Vehicle Type	Percent Type	Non-Catalyst	Catalyst	Diesel
Light Auto	54.40	0.40	99.40	0.20
Light Truck < 3,750 lb	s 15.30	0.70	98.00	1.30
Light Truck 3,751- 5,75	16.40	0.60	98.80	0.60
Med Truck 5,751-8,50	7.30	0.00	98.60	1.40
Lite-Heavy 8,501-10,00	0 1.10	0.00	81.80	18.20
Lite-Heavy 10,001-14,00	0.30	0.00	66.70	33.30
Med-Heavy 14,001-33,00	1.00	0.00	20.00	80.00
Heavy-Heavy 33,001-60,00	0.80	0.00	0.00	100.00
Line Haul > 60,000 lb	s 0.00	0.00	0.00	100.00
Urban Bus	0.20	0.00	50.00	50.00
Motorcycle	1.60	50.00	50.00	0.00
School Bus	0.10	0.00	0.00	100.00
Motor Home	1.50	0.00	93.30	6.70

TIGVEI COMGICIONS						
	Residential				Commercial	L
	Home-	Home-	Home-			
	Work	Shop	Other	Commute	Non-Work	Customer
Urban Trip Length (miles)	10.8	2.0	7.5	9.5	7.4	7.4
Rural Trip Length (miles)	16.8	7.1	7.9	14.7	6.6	6.6
Trip Speeds (mph)	35.0	35.0	35.0	35.0	35.0	35.0
<pre>% of Trips - Residential</pre>	32.9	18.0	49.1			
% of Trips - Commercial (by land	i use)				
Elementary school	1	,		20.0	10.0	70.0
City park				5.0	2.5	92.5
Regnl shop. center				2.0	1.0	97.0
General office building				35.0	17.5	47.5
Goverment office building				10.0	5.0	85.0

Page: 6 02/14/2007 9:59 AM

General light industry

50.0 25.0 25.0

Page: 7 02/14/2007 9:59 AM

MITIGATION OPTIONS SELECTED

Residential Mitigation Measures

Residential Mix of Uses Mitigation

Percent Reduction in Trips is 7.67% (calculated as a % of 9.57 trips/day)
Note that the above percent is applied to a baseline of 9.57 and that product is

subtracted from the Unmitigated Trips

Inputs Selected:

The number of housing units within a 1/2 mile radius of the project, plus the number of residential units included in the project are 6578.

The employment for the study area (within a 1/2 mile radius of the project) is 7894.

Residential Local-Serving Retail Mitigation

Percent Reduction in Trips is 2% (calculated as a % of 9.57 trips/day)
Note that the above percent is applied to a baseline of 9.57 and that product is subtracted from the Unmitigated Trips
Inputs Selected:

The Presence of Local-Serving Retail checkbox was selected.

Non-Residential Mitigation Measures

Non-Residential Mix of Uses Mitigation

Percent Reduction in Trips is 7.67%

Inputs Selected:

The number of housing units within a 1/2 mile radius of the project, plus the number of residential units included in the project are 6578.

The employment for the study area (within a 1/2 mile radius of the project) is 7894.

Non-Residential Local-Serving Retail Mitigation

Percent Reduction in Trips is 2%

Inputs Selected:

The Presence of Local-Serving Retail checkbox was selected.

Page: 8 02/14/2007 9:59 AM

Changes made to the default values for Land Use Trip Percentages

The Trip Rate and/or Acreage values for Single family housing have changed from the defaults 9.57/1237.67 to 9.45/1141

Changes made to the default values for Area

The area souce mitigation measure option switch changed from off to on. The natural gas single family usage rate changed from 6665.0 to 4094.1. The natural gas multi-family usage rate changed from 4011.5 to 2288.9. The wood stove percentage changed from 67 to 0. The natural gas fireplace percentage changed from 33 to 100. The landscape year changed from 2006 to 2020.

The consumer product ROG pounds per person changed from 0.0171 to 0.0151.

Changes made to the default values for Operations

The mitigation option switch changed from off to on.

The operational emission year changed from 2006 to 2020.

The home based work selection item changed from 8 to 7.

The home based shopping selection item changed from 8 to 7.

The home based shopping urban trip length changed from 7.3 to 2.

The home based other selection item changed from 8 to 7.

The commercial based commute selection item changed from 8 to 7.

The commercial based non-work selection item changed from 8 to 7.

The commercial based customer selection item changed from 8 to 7.

The Res and Non-Res Mix of Uses Mitigation changed from off to on.

The Res and Non-Res Local-Serving Retail Mitigation changed from off to on.

Page: 1 02/14/2007 10:01 AM

URBEMIS 2002 For Windows 8.7.0

File Name: H:\ClientData\Castle and Cooke\Gateway Project Madera\GATEWAY AIR STUDY 8-17-06 (distrib Project Name: Gateway Village Operations Project Location: Non-Residential Template On-Road Motor Vehicle Emissions Based on EMFAC2002 version 2.2

SUMMARY REPORT (Tons/Year)

AREA SOURCE EMISSION ESTIMATES	3				
	ROG	NOx	CO	SO2	PM10
TOTALS (tpy, unmitigated)	57.48	10.26	19.49	0.09	0.06
TOTALS (tpy, mitigated)	57.48	10.26	19.49	0.09	0.06
OPERATIONAL (VEHICLE) EMISSION	N ESTIMA	ATES			
	ROG	NOx	CO	SO2	PM10
TOTALS (tpy, unmitigated)	87.26	96.53	909.00	1.03	80.95
TOTALS (tpy, mitigated)	79.26	86.35	813.02	0.92	72.40
SUM OF AREA AND OPERATIONAL EN	MISSION	ESTIMATES			
	ROG	NOx	CO	SO2	PM10
TOTALS (tpy, unmitigated)	144.75	106.79	928.49	1.12	81.01
TOTALS (tpy, mitigated)	136.75	96.61	832.51	1.01	72.46

Page: 2 02/14/2007 10:01 AM

URBEMIS 2002 For Windows 8.7.0

File Name: H:\ClientData\Castle and Cooke\Gateway Project Madera\GATEWAY AIR STUDY 8-17-06 (distrib Project Name: Gateway Village Operations Project Location: Non-Residential Template On-Road Motor Vehicle Emissions Based on EMFAC2002 version 2.2

DETAIL REPORT

(Tons/Year)

AREA SOURCE EMISSION ESTIMATES Source Natural Gas Hearth Landscaping Consumer Prdcts	ROG 0.76 0.00 1.78 45.03	Year, NOx 10.02 0.00 0.23	Unmitigated) CO 5.28 0.00 14.21	SO2 0.00 0.00 0.09	PM10 0.02 0.00 0.05
Architectural Coatings	9.92	-	-	-	-
TOTALS (tpy, unmitigated)	57.48	10.26	19.49	0.09	0.06
AREA SOURCE EMISSION ESTIMATES	(Tons pe	r Year,	Mitigated)		
Source	ROG	NOx	CO	SO2	PM10
Natural Gas	0.76	10.02	5.28	0	0.02
Hearth	0.00	0.00	0.00	0.00	0.00
Landscaping	1.78	0.23	14.21	0.09	0.05
Consumer Prdcts	45.03	-	-	-	-
Architectural Coatings	9.92	-	_	_	_
TOTALS (tpy, mitigated)					

Area Source Mitigation Measures

Page: 3 02/14/2007 10:01 AM

UNMITIGATED OPERATIONAL EMISSIONS

			•				
		ROG	NOx	CO	SO2	PM10	
	Single family housing	35.20	41.11	393.48	0.45	35.15	
	Apartments low rise	4.62	5.17	49.52	0.06	4.42	
	Retirement community	3.55	3.50	33.47	0.04	2.99	
	Elementary school	6.24	3.54	33.11	0.04	2.94	
	City park	0.32	0.22	1.98	0.00	0.18	
	Regnl shop. center	22.97	26.78	246.09	0.28	21.96	
	General office building	0.62	0.59	5.53	0.01	0.51	
	Government office building	11.08	12.54	116.98	0.13	10.14	
	General light industry	2.66	3.07	28.85	0.03	2.66	
	TOTAL EMISSIONS (tons/yr)	87.26	96.53	909.00	1.03	80.95	
	· -						

Includes correction for passby trips.

Does not include double counting adjustment for internal trips.

OPERATIONAL (Vehicle) EMISSION ESTIMATES

Analysis Year: 2015 Season: Annual

EMFAC Version: EMFAC2002 (9/2002)

Summary of Land Uses:

Unit Type	Acreage	Trip	Rate	No. Units	Total Trips
Single family housing	1,140.00		trips/dwelling unit		
Apartments low rise	43.75		trips/dwelling unit		,830.00
Retirement community	176.00	3.71	trips/dwelling unit	880.00 3	,264.80
Elementary school		1.29	trips/students	3,200.00 4	,128.00
City park		1.59	trips/acres	148.00	235.32
Regnl shop. center		42.94	trips/1000 sq. ft.	787.0233	,794.64
General office building		3.32	trips/1000 sq. ft.	171.30	568.72
Goverment office building	g	68.93	trips/1000 sq. ft.	239.5816	,514.25
General light industry	_	6.97	trips/1000 sq. ft.	387.68 2	,702.13

Sum of Total Trips 104,414.84
Total Vehicle Miles Traveled 587,851.49

Vehicle Assumptions:

Fleet Mix:

Vehicle Type	Percent Type	Non-Catalyst	Catalyst	Diesel
Light Auto	54.40	0.40	99.40	0.20
Light Truck < 3,750 lbs	15.30	0.70	98.00	1.30
Light Truck 3,751- 5,750	16.40	0.60	98.80	0.60
Med Truck 5,751-8,500	7.30	0.00	98.60	1.40
Lite-Heavy 8,501-10,000	1.10	0.00	81.80	18.20
Lite-Heavy 10,001-14,000	0.30	0.00	66.70	33.30
Med-Heavy 14,001-33,000	1.00	0.00	20.00	80.00
Heavy-Heavy 33,001-60,000	0.80	0.00	0.00	100.00
Line Haul > 60,000 lbs	0.00	0.00	0.00	100.00
Urban Bus	0.20	0.00	50.00	50.00
Motorcycle	1.60	50.00	50.00	0.00
School Bus	0.10	0.00	0.00	100.00
Motor Home	1.50	0.00	93.30	6.70

Residential			Commercial	L
Home-	Home-			
Shop	Other	Commute	Non-Work	Customer
2.0	7.5	9.5	7.4	7.4
7.1	7.9	14.7	6.6	6.6
35.0	35.0	35.0	35.0	35.0
18.0	49.1			
d use)				
		20.0	10.0	70.0
		5.0	2.5	92.5
		2.0	1.0	97.0
		35.0	17.5	47.5
		10.0	5.0	85.0
		50.0	25.0	25.0
	Home- Shop 2.0 7.1 35.0	Home-Shop Other 2.0 7.5 7.1 7.9 35.0 35.0 49.1	Home- Shop Other Commute 2.0 7.5 9.5 7.1 7.9 14.7 35.0 35.0 35.0 18.0 49.1 duse) 20.0 5.0 2.0 35.0 10.0	Home-Shop Other Commute Non-Work 2.0 7.5 9.5 7.4 7.1 7.9 14.7 6.6 35.0 35.0 35.0 35.0 18.0 49.1 duse) 20.0 10.0 5.0 2.5 2.0 1.0 35.0 17.5 10.0 5.0

Page: 4 02/14/2007 10:01 AM

Page: 5 02/14/2007 10:01 AM

MITIGATED OPERATIONAL EMISSIONS

	ROG	NOx	CO	S02	PM10
Single family housing	32.13	37.01	354.29	0.40	31.65
Apartments low rise	4.10	4.48	42.88	0.05	3.83
Retirement community	2.89	2.63	25.13	0.03	2.24
Elementary school	5.96	3.20	29.91	0.03	2.65
City park	0.30	0.20	1.79	0.00	0.17
Regnl shop. center	20.83	24.20	222.30	0.25	19.84
General office building	0.58	0.54	4.99	0.01	0.46
Goverment office building	10.03	11.33	105.67	0.12	9.16
General light industry	2.44	2.78	26.06	0.03	2.41
TOTAL EMISSIONS (tons/yr)	79.26	86.35	813.02	0.92	72.40
PERCENTAGE REDUCTION %	9	11	11	11	11

Includes correction for passby trips.

Does not include double counting adjustment for internal trips.

OPERATIONAL (Vehicle) EMISSION ESTIMATES

Analysis Year: 2015 Season: Annual

EMFAC Version: EMFAC2002 (9/2002)

Summary of Land Uses:

Unit Type	Acreage	Trip	Rate	No. Units	Total Trips
Single family housing	1,140.00	9.29	trips/dwelling unit	4,131.0038	,376.99
Apartments low rise	43.75	6.90	trips/dwelling unit	700.00 4	,830.00
Retirement community	176.00	3.71	trips/dwelling unit	880.00 3	,264.80
Elementary school		1.29	trips/students	3,200.00 4	,128.00
City park		1.59	trips/acres	148.00	235.32
Regnl shop. center		42.94	trips/1000 sq. ft.	787.0233	,794.64
General office building		3.32	trips/1000 sq. ft.	171.30	568.72
Government office building	g	68.93	trips/1000 sq. ft.	239.5816	,514.25
General light industry		6.97	trips/1000 sq. ft.	387.68 2	,702.13

Sum of Total Trips 104,414.84
Total Vehicle Miles Traveled 587,851.49

Vehicle Assumptions:

Fleet Mix:

Vehicle Type	Percent Type	Non-Catalyst	Catalyst	Diesel
Light Auto	54.40	0.40	99.40	0.20
Light Truck < 3,750 lbs	s 15.30	0.70	98.00	1.30
Light Truck 3,751- 5,75	0 16.40	0.60	98.80	0.60
Med Truck 5,751-8,500	0 7.30	0.00	98.60	1.40
Lite-Heavy 8,501-10,000	0 1.10	0.00	81.80	18.20
Lite-Heavy 10,001-14,000	0.30	0.00	66.70	33.30
Med-Heavy 14,001-33,000	0 1.00	0.00	20.00	80.00
Heavy-Heavy 33,001-60,00	0.80	0.00	0.00	100.00
Line Haul > 60,000 lb:	s 0.00	0.00	0.00	100.00
Urban Bus	0.20	0.00	50.00	50.00
Motorcycle	1.60	50.00	50.00	0.00
School Bus	0.10	0.00	0.00	100.00
Motor Home	1.50	0.00	93.30	6.70

Traver Conditions						
	Residential			Commercial		
	Home-	Home-	Home-			
	Work	Shop	Other	Commute	Non-Work	Customer
Urban Trip Length (miles)	10.8	2.0	7.5	9.5	7.4	7.4
Rural Trip Length (miles)	16.8	7.1	7.9	14.7	6.6	6.6
Trip Speeds (mph)	35.0	35.0	35.0	35.0	35.0	35.0
% of Trips - Residential	32.9	18.0	49.1			
% of Trips - Commercial ()	bv land	use)				
Elementary school	•	•		20.0	10.0	70.0
City park				5.0	2.5	92.5
Regnl shop. center				2.0	1.0	97.0
General office building				35.0	17.5	47.5
Government office building				10.0	5.0	85.0

Page: 6 02/14/2007 10:01 AM

General light industry

50.0

25.0

25.0

Page: 7 02/14/2007 10:01 AM

MITIGATION OPTIONS SELECTED

Residential Mitigation Measures *******

Residential Mix of Uses Mitigation

Percent Reduction in Trips is 7.67% (calculated as a % of 9.57 trips/day) Note that the above percent is applied to a baseline of 9.57 and that product is subtracted from the Unmitigated Trips

Inputs Selected:

The number of housing units within a 1/2 mile radius of the project, plus the number of residential units included in the project are 6578. The employment for the study area (within a 1/2 mile radius of the project) is 7894.

Residential Local-Serving Retail Mitigation

Percent Reduction in Trips is 2% (calculated as a % of 9.57 trips/day) Note that the above percent is applied to a baseline of 9.57 and that product is subtracted from the Unmitigated Trips Inputs Selected:

The Presence of Local-Serving Retail checkbox was selected.

Non-Residential Mitigation Measures -----

Non-Residential Mix of Uses Mitigation

Percent Reduction in Trips is 7.67%

Inputs Selected:

The number of housing units within a 1/2 mile radius of the project, plus the number of residential units included in the project are 6578. The employment for the study area (within a 1/2 mile radius of the project) is 7894.

Non-Residential Local-Serving Retail Mitigation

Percent Reduction in Trips is 2%

Inputs Selected:

The Presence of Local-Serving Retail checkbox was selected.

Page: 8 02/14/2007 10:01 AM

Changes made to the default values for Land Use Trip Percentages

The Trip Rate and/or Acreage values for Single family housing have changed from the defaults 9.57/1377. to 9.29/1140

Changes made to the default values for Area

The area souce mitigation measure option switch changed from off to on. The natural gas single family usage rate changed from 6665.0 to 4094.1. The natural gas multi-family usage rate changed from 4011.5 to 2288.9. The wood stove percentage changed from 67 to 0. The natural gas fireplace percentage changed from 33 to 100. The landscape year changed from 2006 to 2015. The consumer product ROG pounds per person changed from 0.0171 to 0.0151.

Changes made to the default values for Operations

The mitigation option switch changed from off to on.
The operational emission year changed from 2006 to 2015.
The home based work selection item changed from 8 to 7.
The home based shopping selection item changed from 8 to 7.
The home based shopping urban trip length changed from 7.3 to 2.
The home based other selection item changed from 8 to 7.
The commercial based commute selection item changed from 8 to 7.
The commercial based non-work selection item changed from 8 to 7.
The commercial based customer selection item changed from 8 to 7.
The Res and Non-Res Mix of Uses Mitigation changed from off to on.
The Res and Non-Res Local-Serving Retail Mitigation changed from off to on.

Page: 1 02/14/2007 10:32 AM

URBEMIS 2002 For Windows 8.7.0

File Name:

H:\ClientData\Castle and Cooke\Gateway Project Madera\GATEWAY AIR STUDY 8-17-06 (distrib

Project Name: Gateway Village Operations
Project Location: Non-Residential Template
On-Road Motor Vehicle Emissions Based on EMFAC2002 version 2.2

SUMMARY REPORT (Tons/Year)

AREA	SOURCE	EMISSION	ESTIMATES

AKBA DO	OKCE BUILDDION BOILING	11110				
		ROG	NOx	CO	SO2	PM10
TOTALS	(tpy, unmitigated)	57.48	10.26	19.49	0.09	0.06
TOTALS	(tpy, mitigated)	57.48	10.26	19.49	0.09	0.06
OPERATIO	ONAL (VEHICLE) EMIS	SION ESTIMA	ATES			
		ROG	NOx	CO	S02	PM10
TOTALS	(tpy, unmitigated)	64.17	66.07	657.73	1.02	80.76
TOTALS	(tpy, mitigated)	58.37	59.10	588.27	0.92	72.23
SUM OF A	AREA AND OPERATIONAL	L EMISSION	ESTIMATES			
		ROG	NOx	CO	SO2	PM10
TOTALS	<pre>(tpy, unmitigated)</pre>	121.65	76.32	677.21	1.11	80.83
TOTALS	(tpy, mitigated)	115.86	69.36	607.75	1.01	72.30

Page: 2 02/14/2007 10:32 AM

URBEMIS 2002 For Windows 8.7.0

File Name: H:\ClientData\Castle and Cooke\Gateway Project Madera\GATEWAY AIR STUDY 8-17-06 (distrib Project Name: Gateway Village Operations Project Location: Non-Residential Template On-Road Motor Vehicle Emissions Based on EMFAC2002 version 2.2

DETAIL REPORT (Tons/Year)

AREA SOURCE EMISSION ESTIMATES	(Tons	per Year,	Unmitigated	1)	
Source	ROG	NOx	CO	SO2	PM10
Natural Gas	0.76	10.02	5.28	0.00	0.02
Hearth	0.00	0.00	0.00	0.00	0.00
Landscaping	1.78	0.23	14.21	0.09	0.05
Consumer Prdcts	45.03	-	_	~	-
Architectural Coatings	9.92	~	-	-	-
TOTALS (tpy, unmitigated)	57.48	10.26	19.49	0.09	0.06
AREA SOURCE EMISSION ESTIMATES	(Tons	per Year,	Mitigated)		
Source	ROG	NOx	CO	SO2	PM10
Natural Gas	0.76	10.02	5.28	0	0.02
Hearth	0.00	0.00	0.00	0.00	0.00
Landscaping	1.78	0.23	14.21	0.09	0.05
	1.,0	0.25	-T.DI	0.05	0.05
Consumer Prdcts	45.03	-	-	-	0.05
		-	-		-

Area Source Mitigation Measures

Page: 3 02/14/2007 10:32 AM

UNMITIGATED OPERATIONAL EMISSIONS

	ROG	NOx	CO	SO2	PM10
Single family housing	25.83	28.13	285.04	0.45	35.07
Apartments low rise	3.40	3.54	35.87	0.06	4.41
Retirement community	2.64	2.39	24.25	0.04	2.98
Elementary school	4.80	2.43	23.94	0.04	2.93
City park	0.25	0.15	1.44	0.00	0.18
Regnl shop. center	16.76	18.33	177.83	0.28	21.91
General office building	0.47	0.41	4.01	0.01	0.51
Goverment office building	8.06	8.58	84.42	0.13	10.11
General light industry	1.96	2.11	20.93	0.03	2.66
TOTAL EMISSIONS (tons/yr)	64.17	66.07	657.73	1.02	80.76

Includes correction for passby trips.

Does not include double counting adjustment for internal trips.

OPERATIONAL (Vehicle) EMISSION ESTIMATES

Season: Annual Analysis Year: 2020

EMFAC Version: EMFAC2002 (9/2002)

Summary of Land Uses:

Unit Type	Acreage	Trip	Rate	No. Units	Total Trips
Single family housing	1,140.00		trips/dwelling unit		•
Apartments low rise	43.75		trips/dwelling unit		•
Retirement community	176.00	3.71	trips/dwelling unit	880.00 3	,264.80
Elementary school		1.29	trips/students	3,200.00 4	,128.00
City park		1.59	trips/acres	148.00	235.32
Regnl shop. center		42.94	trips/1000 sq. ft.	787.0233	,794.64
General office building		3.32	trips/1000 sq. ft.	171.30	568.72
Goverment office building	ng	68.93	trips/1000 sq. ft.	239.5816	,514.25
General light industry	_	6.97	trips/1000 sq. ft.	387.68 2	,702.13

Sum of Total Trips 104,414.84 Total Vehicle Miles Traveled 587,851.49 104,414.84

Vehicle Assumptions:

Fleet Mix:

Vehicle Type	Percent Type	Non-Catalyst	Catalyst	Diesel
Light Auto	54.40	0.40	99.40	0.20
Light Truck < 3,750 lb	s 15.30	0.70	98.00	1.30
Light Truck 3,751- 5,75	0 16.40	0.60	98.80	0.60
Med Truck 5,751-8,50	0 7.30	0.00	98.60	1.40
Lite-Heavy 8,501-10,00	0 1.10	0.00	81.80	18.20
Lite-Heavy 10,001-14,00	0 0.30	0.00	66.70	33.30
Med-Heavy 14,001-33,00	0 1.00	0.00	20.00	80.00
Heavy-Heavy 33,001-60,00	0 0.80	0.00	0.00	100.00
Line Haul > 60,000 lb	s 0.00	0.00	0.00	100.00
Urban Bus	0.20	0.00	50.00	50.00
Motorcycle	1.60	50.00	50.00	0.00
School Bus	0.10	0.00	0.00	100.00
Motor Home	1.50	0.00	93.30	6.70

Travel Conditions							
	Residential			Commercial			
	Home-	Home-	Home-				
	Work	Shop	Other	Commute	Non-Work	Customer	
Urban Trip Length (miles)	10.8	2.0	7.5	9.5	7.4	7.4	
Rural Trip Length (miles)	16.8	7.1	7.9	14.7	6.6	6.6	
Trip Speeds (mph)	35.0	35.0	35.0	35.0	35.0	35.0	
% of Trips - Residential	32.9	18.0	49.1				
0 -5 muiu - Gi-1 (b	1 2						
% of Trips - Commercial (b	y rand	use)		00.0	10.0	70.0	
Elementary school				20.0	10.0	70.0	
City park				5.0	2.5	92.5	
Regnl shop. center				2.0	1.0	97.0	
General office building				35.0	17.5	47.5	
Goverment office building				10.0	5.0	85.0	
General light industry				50.0	25.0	25.0	

Page: 4 02/14/2007 10:32 AM

Page: 5 02/14/2007 10:32 AM

MITIGATED OPERATIONAL EMISSIONS

	ROG	NOx	CO	SO2	PM10
Single family housing	23.60	25.33	256.65	0.40	31.58
Apartments low rise	3.03	3.07	31.06	0.05	3.82
Retirement community	2.17	1.80	18.20	0.03	2.24
Elementary school	4.60	2.19	21.62	0.03	2.65
City park	0.23	0.13	1.30	0.00	0.17
Regnl shop. center	15.20	16.56	160.64	0.25	19.79
General office building	0.44	0.37	3.62	0.01	0.46
Goverment office building	7.30	7.75	76.26	0.12	9.13
General light industry	1.80	1.90	18.91	0.03	2.40
TOTAL EMISSIONS (tons/yr) PERCENTAGE REDUCTION %	58.37 9	59.10 11	588.27 11	0.92 11	72.23 11
121102111102 11220011011					

Includes correction for passby trips. Does not include double counting adjustment for internal trips.

OPERATIONAL (Vehicle) EMISSION ESTIMATES

Analysis Year: 2020 Season: Annual

EMFAC Version: EMFAC2002 (9/2002)

Summary of Land Uses:

	Total Trips
Single family housing 1,140.00 9.29 trips/dwelling unit 4,131.0038,376 Apartments low rise 43.75 6.90 trips/dwelling unit 700.00 4,830 Retirement community 176.00 3.71 trips/dwelling unit 880.00 3,266 Elementary school 1.29 trips/students 3,200.00 4,120 City park 1.59 trips/acres 148.00 23 Regnl shop. center 42.94 trips/1000 sq. ft. 787.0233,792 General office building 3.32 trips/1000 sq. ft. 171.30 568 Goverment office building 68.93 trips/1000 sq. ft. 239.5816,514 General light industry 6.97 trips/1000 sq. ft. 387.68 2,702	4,830.00 3,264.80 4,128.00 235.32 33,794.64 568.72 16,514.25

Sum of Total Trips 104,414.84
Total Vehicle Miles Traveled 587,851.49

Vehicle Assumptions:

Fleet Mix:

Vehicle Type	Percent Type	Non-Catalyst	Catalyst	Diesel
Light Auto	54.40	0.40	99.40	0.20
Light Truck < 3,750 lb	s 15.30	0.70	98.00	1.30
Light Truck 3,751- 5,75	0 16.40	0.60	98.80	0.60
Med Truck 5,751-8,50	0 7.30	0.00	98.60	1.40
Lite-Heavy 8,501-10,00	0 1.10	0.00	81.80	18.20
Lite-Heavy 10,001-14,00	0 0.30	0.00	66.70	33.30
Med-Heavy 14,001-33,00	0 1.00	0.00	20.00	80.00
Heavy-Heavy 33,001-60,00	0 0.80	0.00	0.00	100.00
Line Haul > 60,000 lb	s 0.00	0.00	0.00	100.00
Urban Bus	0.20	0.00	50.00	50.00
Motorcycle	1.60	50.00	50.00	0.00
School Bus	0.10	0.00	0.00	100.00
Motor Home	1.50	0.00	93.30	6.70

TIGVET CONGICIONS						
		Residential	l		Commercial	L
	Home-	Home-	Home-			
	Work	Shop	Other	Commute	Non-Work	Customer
Urban Trip Length (miles)	10.8	2.0	7.5	9.5	7.4	7.4
Rural Trip Length (miles)	16.8	7.1	7.9	14.7	6.6	6.6
Trip Speeds (mph)	35.0	35.0	35.0	35.0	35.0	35.0
% of Trips - Residential	32.9	18.0	49.1			
% of Trips - Commercial (by land	use)				
Elementary school	•			20.0	10.0	70.0
City park				5.0	2.5	92.5
Regnl shop. center				2.0	1.0	97.0
General office building				35.0	17.5	47.5
Goverment office building				10.0	5.0	85.0

Page: 6 02/14/2007 10:32 AM

General light industry

50.0

25.0

25.0

Page: 7 02/14/2007 10:32 AM

MITIGATION OPTIONS SELECTED

Residential Mitigation Measures ______

Residential Mix of Uses Mitigation

Percent Reduction in Trips is 7.67% (calculated as a % of 9.57 trips/day) Note that the above percent is applied to a baseline of 9.57 and that product is subtracted from the Unmitigated Trips

Inputs Selected:

The number of housing units within a 1/2 mile radius of the project, plus the number of residential units included in the project are 6578. The employment for the study area (within a 1/2 mile radius of the project) is 7894.

Residential Local-Serving Retail Mitigation

Percent Reduction in Trips is 2% (calculated as a % of 9.57 trips/day) Note that the above percent is applied to a baseline of 9.57 and that product is subtracted from the Unmitigated Trips Inputs Selected:

The Presence of Local-Serving Retail checkbox was selected.

Non-Residential Mitigation Measures ______

Non-Residential Mix of Uses Mitigation

Percent Reduction in Trips is 7.67%

Inputs Selected:

The number of housing units within a 1/2 mile radius of the project, plus the number of residential units included in the project are 6578.

The employment for the study area (within a 1/2 mile radius of the project) is 7894.

Non-Residential Local-Serving Retail Mitigation

Percent Reduction in Trips is 2%

Inputs Selected:

The Presence of Local-Serving Retail checkbox was selected.

Page: 8 02/14/2007 10:32 AM

Changes made to the default values for Land Use Trip Percentages

The Trip Rate and/or Acreage values for Single family housing have changed from the defaults 9.57/1377. to 9.29/1140

Changes made to the default values for Area

The area souce mitigation measure option switch changed from off to on. The natural gas single family usage rate changed from 6665.0 to 4094.1. The natural gas multi-family usage rate changed from 4011.5 to 2288.9. The wood stove percentage changed from 67 to 0. The natural gas fireplace percentage changed from 33 to 100. The landscape year changed from 2006 to 2020. The consumer product ROG pounds per person changed from 0.0171 to 0.0151.

Changes made to the default values for Operations

The mitigation option switch changed from off to on.
The operational emission year changed from 2006 to 2020.
The home based work selection item changed from 8 to 7.
The home based shopping selection item changed from 8 to 7.
The home based shopping urban trip length changed from 7.3 to 2.
The home based other selection item changed from 8 to 7.
The commercial based commute selection item changed from 8 to 7.
The commercial based non-work selection item changed from 8 to 7.
The commercial based customer selection item changed from 8 to 7.
The Res and Non-Res Mix of Uses Mitigation changed from off to on.
The Res and Non-Res Local-Serving Retail Mitigation changed from off to on.

Page: 1 02/14/2007 10:02 AM

URBEMIS 2002 For Windows 8.7.0

File Name: H:\ClientData\Castle and Cooke\Gateway Project Madera\GATEWAY AIR STUDY 8-17-06 (distrib Project Name: Gateway Village Operations Project Location: Non-Residential Template On-Road Motor Vehicle Emissions Based on EMFAC2002 version 2.2

SUMMARY REPORT (Tons/Year)

AREA SOURCE EMISSION ESTIMATE	s				
	ROG	NOx	CO	S02	PM10
TOTALS (tpy, unmitigated)	61.24	10.93	20.82	0.10	0.07
TOTALS (tpy, mitigated)	61.24	10.93	20.82	0.10	0.07
OPERATIONAL (VEHICLE) EMISSIO	N ESTIMA	TFC			
OFERATIONAL (VEHICLE) EMISSIO	ROG	NOx	co	S02	PM10
TOTAL (
TOTALS (tpy, unmitigated)	68.41	70.63	703.00	1.09	86.36
TOTALS (tpy, mitigated)	62.21	63.17	628.66	0.98	77.23
SUM OF AREA AND OPERATIONAL E	MISSION	ESTIMATES			
	ROG	NOx	CO	SO2	PM10
TOTALS (tpy, unmitigated)	129.65	81.56	723.82	1.19	86.43
TOTALS (tpy, mitigated)	123.45	74.11	649.48	1.08	77.30
TOTALS (cpy, micigated)	143.45	, 4 • TT	049.40	1.00	11.30

Page: 2 02/14/2007 10:02 AM

URBEMIS 2002 For Windows 8.7.0

File Name: H:\ClientData\Castle and Cooke\Gateway Project Madera\GATEWAY AIR STUDY 8-17-06 (distrib

Project Name: Gateway Village Operations
Project Location: Non-Residential Template
On-Road Motor Vehicle Emissions Based on EMFAC2002 version 2.2

DETAIL REPORT (Tons/Year)

AREA SOURCE EMISSION ESTIMATES	(Tons	per Year,	Unmitigated)	+	
Source	ROG	NOx	co	SO2	PM10
Natural Gas	0.81	10.68	5.62	0.00	0.02
Hearth	0.00	0.00	0.00	0.00	0.00
Landscaping	1.90	0.25	15.20	0.10	0.05
Consumer Prdcts	47.86	-	-	-	-
Architectural Coatings	10.66	_	_	-	_
TOTALS (tpy, unmitigated)	61.24	10.93	20.82	0.10	0.07
AREA SOURCE EMISSION ESTIMATES	(Tons	per Year,	Mitigated)		
Source	ROG	NOx	co	SO2	PM10
Natural Gas	0.81	10.68	5.62	0	0.02
Hearth	0.00	0.00	0.00	0.00	0.00
Landscaping	1.90	0.25	15.20	0.10	0.05
Landscaping Consumer Prdcts	1.90 47.86	0.25	15.20	0.10	0.05
		0.25	15.20	0.10	0.05 - -

Area Source Mitigation Measures

Page: 3 02/14/2007 10:02 AM

UNMITIGATED OPERATIONAL EMISSIONS

	ROG	NOx	CO	SO2	PM10
Single family housing	27.66	30.09	304.85	0.48	37.51
Apartments low rise	3.40	3.54	35.87	0.06	4.41
Retirement community	2.70	2.45	24.80	0.04	3.05
Elementary school	4.80	2.43	23.94	0.04	2.93
City park	0.25	0.15	1.44	0.00	0.18
Regnl shop. center	18.62	20.36	197.52	0.31	24.33
General office building	0.47	0.41	4.01	0.01	0.51
Goverment office building	8.06	8.58	84.42	0.13	10.11
General light industry	2.45	2.63	26.16	0.04	3.32
TOTAL EMISSIONS (tons/yr)	68.41	70.63	703.00	1.09	86.36

Includes correction for passby trips.

Does not include double counting adjustment for internal trips.

OPERATIONAL (Vehicle) EMISSION ESTIMATES

Analysis Year: 2020 Season: Annual

EMFAC Version: EMFAC2002 (9/2002)

Summary of Land Uses:

Unit Type	Acreage	Trip	Rate	No. Units	Total Trips
Single family housing	1,141.00	9.18	trips/dwelling unit	4,471.0041	,043.78
Apartments low rise	43.75	6.90	trips/dwelling unit	700.00 4	,830.00
Retirement community	180.00	3.71	trips/dwelling unit	900.00 3	,339.00
Elementary school		1.29	trips/students	3,200.00 4	,128.00
City park		1.59	trips/acres	148.00	235.32
Regnl shop. center		42.94	trips/1000 sq. ft.	874.1437	,535.57
General office building		3.32	trips/1000 sq. ft.	171.30	568.72
Goverment office building	g	68.93	trips/1000 sq. ft.	239.5816	,514.25
General light industry		6.97	trips/1000 sq. ft.	484.60 3	,377.66

Sum of Total Trips 111,572.30 Total Vehicle Miles Traveled 628,575.64

Vehicle Assumptions:

Fleet Mix:

Vehicle Type	Percent Type	Non-Catalyst	Catalyst	Diesel
Light Auto	54.40	0.40	99.40	0.20
Light Truck < 3,750 lb	s 15.30	0.70	98.00	1.30
Light Truck 3,751- 5,75	0 16.40	0.60	98.80	0.60
Med Truck 5,751-8,50	0 7.30	0.00	98.60	1.40
Lite-Heavy 8,501-10,00	0 1.10	0.00	81.80	18.20
Lite-Heavy 10,001-14,00	0 0.30	0.00	66.70	33.30
Med-Heavy 14,001-33,00	0 1.00	0.00	20.00	80.00
Heavy-Heavy 33,001-60,00	0 0.80	0.00	0.00	100.00
Line Haul > 60,000 lb	s 0.00	0.00	0.00	100.00
Urban Bus	0.20	0.00	50.00	50.00
Motorcycle	1.60	50.00	50.00	0.00
School Bus	0.10	0.00	0.00	100.00
Motor Home	1.50	0.00	93.30	6.70

		Residential			Commercia	l
	Home-	Home-	Home-			
	Work	Shop	Other	Commute	Non-Work	Customer
Urban Trip Length (miles)	10.8	2.0	7.5	9.5	7.4	7.4
Rural Trip Length (miles)	16.8	7.1	7.9	14.7	6.6	6.6
Trip Speeds (mph)	35.0	35.0	35.0	35.0	35.0	35.0
% of Trips - Residential	32.9	18.0	49.1			
% of Trips - Commercial (by land	use)				
Elementary school	•			20.0	10.0	70.0
City park "				5.0	2.5	92.5
Regnl shop. center				2.0	1.0	97.0
General office building				35.0	17.5	47.5
Goverment office building				10.0	5.0	85.0
General light industry				50.0	25.0	25.0

Page: 4 02/14/2007 10:02 AM

Page: 5 02/14/2007 10:02 AM

MITIGATED OPERATIONAL EMISSIONS

	ROG	NOx	CO	SO2	PM10
Single family housing	25.26	27.06	274.13	0.43	33.73
Apartments low rise	3.03	3.07	31.06	0.05	3.82
Retirement community	2.22	1.84	18.62	0.03	2.29
Elementary school	4.60	2.19	21.62	0.03	2.65
City park	0.23	0.13	1.30	0.00	0.17
Regnl shop. center	16.89	18.39	178.42	0.28	21.98
General office building	0.44	0.37	3.62	0.01	0.46
Government office building	7.30	7.75	76.26	0.12	9.13
General light industry	2.25	2.38	23.64	0.04	3.00
TOTAL EMISSIONS (tons/yr)	62.21	63.17	628.66	0.98	77.23
PERCENTAGE REDUCTION %	9	11	11	11	11

Includes correction for passby trips. Does not include double counting adjustment for internal trips.

OPERATIONAL (Vehicle) EMISSION ESTIMATES

Analysis Year: 2020 Season: Annual

EMFAC Version: EMFAC2002 (9/2002)

Summary of Land Uses:

Unit Type	Acreage	Trip	Rate		No. Units	Total Trips
Single family housing Apartments low rise Retirement community Elementary school City park Regnl shop. center General office building Government office building General light industry	1,141.00 43.75 180.00	6.90 3.71 1.29 1.59 42.94 3.32 68.93	trips/dwelling trips/dwelling trips/dwelling trips/students trips/acres trips/1000 sq. trips/1000 sq. trips/1000 sq. trips/1000 sq.	unit unit ft. ft. ft.	4,471.0041 700.00 4 900.00 3 3,200.00 4 148.00 874.1437 171.30 239.5816 484.60 3	,830.00 ,339.00 ,128.00 235.32 ,535.57 568.72 ,514.25

Sum of Total Trips 111,572.30 Total Vehicle Miles Traveled 628,575.64

Vehicle Assumptions:

Fleet Mix:

Vehicle Type	Percent Type	Non-Catalyst	Catalyst	Diesel
Light Auto	54.40	0.40	99.40	0.20
Light Truck < 3,750 lbs	s 15.30	0.70	98.00	1.30
Light Truck 3,751- 5,750	0 16.40	0.60	98.80	0.60
Med Truck 5,751-8,500	7.30	0.00	98.60	1.40
Lite-Heavy 8,501-10,000	0 1.10	0.00	81.80	18.20
Lite-Heavy 10,001-14,000	0.30	0.00	66.70	33.30
Med-Heavy 14,001-33,000	0 1.00	0.00	20.00	80.00
Heavy-Heavy 33,001-60,000	0.80	0.00	0.00	100.00
Line Haul > 60,000 lb:	s 0.00	0.00	0.00	100.00
Urban Bus	0.20	0.00	50.00	50.00
Motorcycle	1.60	50.00	50.00	0.00
School Bus	0.10	0.00	0.00	100.00
Motor Home	1.50	0.00	93.30	6.70

Traver Conditions						
		Residential			Commercial	
	Home-	Home-	Home~			
	Work	Shop	Other.	Commute	Non-Work C	ustomer
Urban Trip Length (miles)	10.8	2.0	7.5	9.5	7.4	7.4
Rural Trip Length (miles)	16.8	7.1	7.9	14.7	6.6	6.6
Trip Speeds (mph)	35.0	35.0	35.0	35.0	35.0	35.0
% of Trips - Residential	32.9	18.0	49.1			
% of Trips - Commercial ()	by land	l use)				
Elementary school	•			20.0	10.0	70.0
City park				5.0	2.5	92.5
Regnl shop. center				2.0	1.0	97.0
General office building				35.0	17.5	47.5
Goverment office building				10.0	5.0	85.0

Page: 6 02/14/2007 10:02 AM

General light industry

50.0 25.0 25.0

Page: 7 02/14/2007 10:02 AM

MITIGATION OPTIONS SELECTED

Residential Mitigation Measures

Residential Mix of Uses Mitigation

Percent Reduction in Trips is 7.67% (calculated as a % of 9.57 trips/day)
Note that the above percent is applied to a baseline of 9.57 and that product is subtracted from the Unmitigated Trips

Inputs Selected:

The number of housing units within a 1/2 mile radius of the project, plus the number of residential units included in the project are 6578.

The employment for the study area (within a 1/2 mile radius of the project) is 7894.

Residential Local-Serving Retail Mitigation

Percent Reduction in Trips is 2% (calculated as a % of 9.57 trips/day)
Note that the above percent is applied to a baseline of 9.57 and that product is subtracted from the Unmitigated Trips
Inputs Selected:

The Presence of Local-Serving Retail checkbox was selected.

Non-Residential Mitigation Measures

Non-Residential Mix of Uses Mitigation

Percent Reduction in Trips is 7.67%

Inputs Selected:

The number of housing units within a 1/2 mile radius of the project, plus the number of residential units included in the project are 6578.

The employment for the study area (within a 1/2 mile radius of the project) is 7894.

Non-Residential Local-Serving Retail Mitigation

Percent Reduction in Trips is 2%

Inputs Selected:

The Presence of Local-Serving Retail checkbox was selected.

```
Page: 8
02/14/2007 10:02 AM
Changes made to the default values for Land Use Trip Percentages
The Trip Rate and/or Acreage values for Single family housing
have changed from the defaults 9.57/1490.33 to 9.18/1141
Changes made to the default values for Area
The area souce mitigation measure option switch changed from off to on.
The natural gas single family usage rate changed from 6665.0 to 4094.1.
The natural gas multi-family usage rate changed from 4011.5 to 2288.9.
The wood stove percentage changed from 67 to 0.
The natural gas fireplace percentage changed from 33 to 100.
The landscape year changed from 2006 to 2020.
The consumer product ROG pounds per person changed from 0.0171 to 0.0151.
Changes made to the default values for Operations
The mitigation option switch changed from off to on.
The operational emission year changed from 2006 to 2020.
The home based work selection item changed from 8 to 7.
```

The home based shopping selection item changed from 8 to 7. The home based shopping urban trip length changed from 7.3 to 2. The home based other selection item changed from 8 to 7.

The commercial based commute selection item changed from 8 to 7. The commercial based non-work selection item changed from 8 to 7. The commercial based customer selection item changed from 8 to 7. The Res and Non-Res Mix of Uses Mitigation changed from off to on.

The Res and Non-Res Local-Serving Retail Mitigation changed from off to on.

Page: 1 02/14/2007 10:03 AM

URBEMIS 2002 For Windows 8.7.0

File Name: H:\ClientData\Castle and Cooke\Gateway Project Madera\GATEWAY AIR STUDY 8-17-06 (distrib Project Name: Gateway Village Operations Project Location: Non-Residential Template On-Road Motor Vehicle Emissions Based on EMFAC2002 version 2.2

SUMMARY REPORT (Tons/Year)

AREA	SOURCE	EMISSION	ESTIMATES

AREA SOURCE EMISSION ESTIMA	TES				
	ROG	NOx	CO	SO2	PM10
TOTALS (tpy, unmitigated)	63.96	11.46	21.80	0.10	0.07
TOTALS (tpy, mitigated)	63.96	11.46	21.80	0.10	0.07
OPERATIONAL (VEHICLE) EMISS	ION ESTIMAT	ES			
	ROG	NOx	CO	SO2	PM10
TOTALS (tpy, unmitigated)	72.11	74.61	742.37	1.16	91.23
TOTALS (tpy, mitigated)	65.56	66.73	663.85	1.03	81.58
SUM OF AREA AND OPERATIONAL	PMTCSTON P	STIMATES			
SOM OF AREA AND OFERALIONAL	ROG	NOx	CO	SO2	PM10
			-		
TOTALS (tpy, unmitigated)	136.07	86.07	764.17	1.26	91.30
TOTALS (tpy, mitigated)	129.52	78.19	685.65	1.14	81.65

Page: 2 02/14/2007 10:03 AM

URBEMIS 2002 For Windows 8.7.0

File Name: H:\ClientData\Castle and Cooke\Gateway Project Madera\GATEWAY AIR STUDY 8-17-06 (distrib Project Name: Gateway Village Operations
Project Location: Non-Residential Template
On-Road Motor Vehicle Emissions Based on EMFAC2002 version 2.2

DETAIL REPORT (Tons/Year)

AREA SOURCE EMISSION ESTIMATES	(Tons	per Year,	Unmitigated)		
Source	ROG	NOx	CO	SO2	PM10
Natural Gas	0.85	11.20	5.90	0.00	0.02
Hearth	0.00	0.00	0.00	0.00	0.00
Landscaping	1.99	0.26	15.90	0.10	0.05
Consumer Prdcts	49.88	-	-	-	_
Architectural Coatings	11.24	-	-	-	-
TOTALS (tpy, unmitigated)	63.96	11.46	21.80	0.10	0.07
AREA SOURCE EMISSION ESTIMATES	(Tons	per Year,	Mitigated)		
Source	ROG	NOx	CO	SO2	PM10
Natural Gas	0.85	11.20	5.90	0	0.02
Hearth	0.00	0.00	0.00	0.00	0.00
Landscaping	1.99	0.26	15.90	0.10	0.05
Consumer Prdcts	49.88	-	-	-	-
Architectural Coatings	11.24	_	_	_	_
TOTALS (tpy, mitigated)	TT.24	_			

Area Source Mitigation Measures

Page: 3 02/14/2007 10:03 AM

UNMITIGATED OPERATIONAL EMISSIONS

	ROG	NOx	CO	SO2	PM10
Single family housing	28.99	31.49	319.07	0.50	39.26
Apartments low rise	3.40	3.54	35.87	0.06	4.41
Retirement community	2.70	2.45	24.80	0.04	3.05
Elementary school	4.80	2.43	23.94	0.04	2.93
City park	0.25	0.15	1.44	0.00	0.18
Regnl shop. center	20.49	22.41	217.43	0.34	26.79
General office building	0.47	0.41	4.01	0.01	0.51
Goverment office building	8.06	8.58	84.42	0.13	10.11
General light industry	2.94	3.16	31.40	0.05	3.99
TOTAL EMISSIONS (tons/yr)	72.11	74.61	742.37	1.16	91.23

Includes correction for passby trips.

Does not include double counting adjustment for internal trips.

OPERATIONAL (Vehicle) EMISSION ESTIMATES

Analysis Year: 2020 Season: Annual

EMFAC Version: EMFAC2002 (9/2002)

Summary of Land Uses:

Unit Type	Acreage	Trip	Rate	No. Units	Total Trips
Single family housing Apartments low rise Retirement community Elementary school City park Regnl shop. center General office building	1,141.00 43.75 180.00	9.09 6.90 3.71 1.29 1.59 42.94 3.32	trips/dwelling unit trips/dwelling unit trips/dwelling unit trips/students trips/acres trips/1000 sq. ft. trips/1000 sq. ft.	4,726.0042 700.00 4 900.00 3 3,200.00 4 148.00 962.2641 171.30	,959.34 ,830.00 ,339.00 ,128.00 235.32 ,319.44 568.72
Government office building	3		trips/1000 sq. ft.	239.5816	,
General light industry		6.97	trips/1000 sq. ft.	581.52 4	,053.19

Sum of Total Trips 117,947.26
Total Vehicle Miles Traveled 664,013.34

Vehicle Assumptions:

Fleet Mix:

Vehicle Type	Percent Type	Non-Catalyst	Catalyst	Diesel
Light Auto	54.40	0.40	99.40	0.20
Light Truck < 3,750 lb	s 15.30	0.70	98.00	1.30
Light Truck 3,751- 5,75	0 16.40	0.60	98.80	0.60
Med Truck 5,751-8,50	0 7.30	0.00	98.60	1.40
Lite-Heavy 8,501-10,00	0 1.10	0.00	81.80	18.20
Lite-Heavy 10,001-14,00	0.30	0.00	66.70	33.30
Med-Heavy 14,001-33,00	0 1.00	0.00	20.00	80.00
Heavy-Heavy 33,001-60,00	0.80	0.00	0.00	100.00
Line Haul > 60,000 lb	s 0.00	0.00	0.00	100.00
Urban Bus	0.20	0.00	50.00	50.00
Motorcycle	1.60	50.00	50.00	0.00
School Bus	0.10	0.00	0.00	100.00
Motor Home	1.50	0.00	93.30	6.70

Travel Conditions					
	Residential			Commercial	
Home-	Home-	Home-			
Work	Shop	Other	Commute	Non-Work	Customer
Urban Trip Length (miles) 10.8	2.0	7.5	9.5	7.4	7.4
Rural Trip Length (miles) 16.8	7.1	7.9	14.7	6.6	6.6
Trip Speeds (mph) 35.0	35.0	35.0	35.0	35.0	35.0
% of Trips - Residential 32.9	18.0	49.1			
% of Trips - Commercial (by land Elementary school City park Regnl shop. center General office building Government office building General light industry	l use)		20.0 5.0 2.0 35.0 10.0 50.0	10.0 2.5 1.0 17.5 5.0 25.0	70.0 92.5 97.0 47.5 85.0 25.0

Page: 4 02/14/2007 10:03 AM

Page: 5 02/14/2007 10:03 AM

MITIGATED OPERATIONAL EMISSIONS

·	ROG	NOx	CO	SO2	PM10
Single family housing	26.45	28.29	286.60	0.45	35.26
Apartments low rise	3.03	3.07	31.06	0.05	3.82
Retirement community	2.22	1.84	18.62	0.03	2.29
Elementary school	4.60	2.19	21.62	0.03	2.65
City park	0.23	0.13	1.30	0.00	0.17
Regnl shop. center	18.59	20.25	196.41	0.30	24.20
General office building	0.44	0.37	3.62	0.01	0.46
Goverment office building	7.30	7.75	76.26	0.12	9.13
General light industry	2.70	2.85	28.36	0.05	3.60
TOTAL EMISSIONS (tons/yr)	65.56	66.73	663.85	1.03	81.58
PERCENTAGE REDUCTION %	9	11	11	11	11

Includes correction for passby trips.

Does not include double counting adjustment for internal trips.

OPERATIONAL (Vehicle) EMISSION ESTIMATES

Analysis Year: 2020 Season: Annual

EMFAC Version: EMFAC2002 (9/2002)

Summary of Land Uses:

Unit Type	Acreage	Trip	Rate	No. Units	Total Trips
Single family housing Apartments low rise Retirement community Elementary school City park Regnl shop. center General office building Government office building General light industry	1,141.00 43.75 180.00	6.90 3.71 1.29 1.59 42.94 3.32 68.93	trips/dwelling unit trips/dwelling unit trips/dwelling unit trips/students trips/acres trips/1000 sq. ft. trips/1000 sq. ft. trips/1000 sq. ft. trips/1000 sq. ft.	4,726.0042 700.00 4 900.00 3 3,200.00 4 148.00 962.2641 171.30 239.5816 581.52 4	,830.00 ,339.00 ,128.00 235.32 ,319.44 568.72 ,514.25

Sum of Total Trips 117,947.26 Total Vehicle Miles Traveled 664,013.34

Vehicle Assumptions:

Fleet Mix:

Vehicle Type	Percent Type	Non-Catalyst	Catalyst	Diesel
Light Auto	54.40	0.40	99.40	0.20
Light Truck < 3,750 lbs	15.30	0.70	98.00	1.30
Light Truck 3,751- 5,750	16.40	0.60	98.80	0.60
Med Truck 5,751-8,500	7.30	0.00	98.60	1.40
Lite-Heavy 8,501-10,000	1.10	0.00	81.80	18.20
Lite-Heavy 10,001-14,000	0.30	0.00	66.70	33.30
Med-Heavy 14,001-33,000	1.00	0.00	20.00	80.00
Heavy-Heavy 33,001-60,000	0.80	0.00	0.00	100.00
Line Haul > 60,000 lbs	3 0.00	0.00	0.00	100.00
Urban Bus	0.20	0.00	50.00	50.00
Motorcycle	1.60	50.00	50.00	0.00
School Bus	0.10	0.00	0.00	100.00
Motor Home	1.50	0.00	93.30	6.70

Traver Conditions							
	Residential			Commercial			
	Home-	Home-	Home-				
	Work	Shop	Other	Commute	Non-Work	Customer	
Urban Trip Length (miles)	10.8	2.0	7.5	9.5	7.4	7.4	
Rural Trip Length (miles)	16.8	7.1	7.9	14.7	6.6	6.6	
Trip Speeds (mph)	35.0	35.0	35.0	35.0	35.0	35.0	
% of Trips - Residential	32.9	18.0	49.1				
% of Trips - Commercial (by land	luse)					
Elementary school	-7	. 4507		20.0	10.0	70.0	
City park				5.0	2.5	92.5	
Regnl shop. center				2.0	1.0	97.0	
General office building				35.0	17.5	47.5	
Goverment office building				10.0	5.0	85.0	

Page: 6 02/14/2007 10:03 AM

General light industry

50.0

25.0

25.0

Page: 7 02/14/2007 10:03 AM

MITIGATION OPTIONS SELECTED

Residential Mitigation Measures ~~~~~~~

Residential Mix of Uses Mitigation

Percent Reduction in Trips is 7.67% (calculated as a % of 9.57 trips/day) Note that the above percent is applied to a baseline of 9.57 and that product is subtracted from the Unmitigated Trips

Inputs Selected:

The number of housing units within a 1/2 mile radius of the project, plus the number of residential units included in the project are 6578. The employment for the study area (within a 1/2 mile radius of the project) is 7894.

Residential Local-Serving Retail Mitigation

Percent Reduction in Trips is 2% (calculated as a % of 9.57 trips/day) Note that the above percent is applied to a baseline of 9.57 and that product is subtracted from the Unmitigated Trips

Inputs Selected:

The Presence of Local-Serving Retail checkbox was selected.

Non-Residential Mitigation Measures ______

Non-Residential Mix of Uses Mitigation

Percent Reduction in Trips is 7.67%

Inputs Selected:

The number of housing units within a 1/2 mile radius of the project, plus the number of residential units included in the project are 6578.

The employment for the study area (within a 1/2 mile radius of the project) is 7894.

Non-Residential Local-Serving Retail Mitigation

Percent Reduction in Trips is 2%

Inputs Selected:

The Presence of Local-Serving Retail checkbox was selected.

Page: 8 02/14/2007 10:03 AM

Changes made to the default values for Land Use Trip Percentages

The Trip Rate and/or Acreage values for Single family housing have changed from the defaults 9.57/1575.33 to 9.09/1141

Changes made to the default values for Area

The area souce mitigation measure option switch changed from off to on. The natural gas single family usage rate changed from 6665.0 to 4094.1. The natural gas multi-family usage rate changed from 4011.5 to 2288.9. The wood stove percentage changed from 67 to 0. The natural gas fireplace percentage changed from 33 to 100. The landscape year changed from 2006 to 2020.

The consumer product ROG pounds per person changed from 0.0171 to 0.0151.

Changes made to the default values for Operations

The mitigation option switch changed from off to on.
The operational emission year changed from 2006 to 2020.
The home based work selection item changed from 8 to 7.
The home based shopping selection item changed from 8 to 7.
The home based shopping urban trip length changed from 7.3 to 2.
The home based other selection item changed from 8 to 7.
The commercial based commute selection item changed from 8 to 7.
The commercial based non-work selection item changed from 8 to 7.
The commercial based customer selection item changed from 8 to 7.
The Res and Non-Res Mix of Uses Mitigation changed from off to on.
The Res and Non-Res Local-Serving Retail Mitigation changed from off to on.

Page: 1 02/14/2007 10:04 AM

URBEMIS 2002 For Windows 8.7.0

File Name: H:\ClientData\Castle and Cooke\Gateway Project Madera\GATEWAY AIR STUDY 8-17-06 (distrib

Project Name: Gateway Village Operations
Project Location: Non-Residential Template

On-Road Motor Vehicle Emissions Based on EMFAC2002 version 2.2

SUMMARY REPORT (Tons/Year)

AREA SOURCE EMISSION ESTIMATE	S				
	ROG	NOx	CO	SO2	PM10
TOTALS (tpy, unmitigated)	63.96	11.46	21.80	0.10	0.07
TOTALS (tpy, mitigated)	63.96	11.46	21.80	0.10	0.07
OPERATIONAL (VEHICLE) EMISSIO	N ESTIMA	ATES			
,,,	ROG	NOx	CO	SO2	PM10
TOTALS (tpy, unmitigated)	51.49	50.61	506.19	1.16	91.07
TOTALS (tpy, mitigated)	46.84	45.27	452.65	1.03	81.43
SUM OF AREA AND OPERATIONAL E	MISSION	ESTIMATES			
	ROG	NOx	CO	SO2	PM10
TOTALS (tpy, unmitigated)	115.45	62.07	527.99	1.26	91.14
TOTALS (tpy, mitigated)	110.80	56.72	474.45	1.14	81.51

Page: 2 02/14/2007 10:04 AM

URBEMIS 2002 For Windows 8.7.0

File Name: H:\ClientData\Castle and Cooke\Gateway Project Madera\GATEWAY AIR STUDY 8-17-06 (distrib Project Name: Gateway Village Operations Project Location: Non-Residential Template On-Road Motor Vehicle Emissions Based on EMFAC2002 version 2.2

DETAIL REPORT (Tons/Year)

AREA SOURCE EMISSION ESTIMATES	(Tons	per Year,	Unmitigated)		
Source	ROG	мох	CO	SO2	PM10
Natural Gas	0.85	11.20	5.90	0.00	0.02
Hearth	0.00	0.00	0.00	0.00	0.00
Landscaping	1.99	0.26	15.90	0.10	0.05
Consumer Prdcts	49.88	-	_	-	_
Architectural Coatings	11.24	~	-	-	_
TOTALS (tpy, unmitigated)	63.96	11.46	21.80	0.10	0.07
AREA SOURCE EMISSION ESTIMATES	(Tons	per Year,	Mitigated)		
Source	ROG	иох	CO	SO2	PM10
Natural Gas	0.85	11.20	5.90	0	0.02
Hearth	0.00	0.00	0.00	0.00	0.00
Landscaping	1.99	0.26	15.90	0.10	0.05
Consumer Prdcts	49.88	_	-	-	-
Architectural Coatings	11.24	_	-	-	_
TOTALS (tpy, mitigated)					

Area Source Mitigation Measures

Page: 3 02/14/2007 10:04 AM

UNMITIGATED OPERATIONAL EMISSIONS

	ROG	NOx	CO	S02	PM10
Single family housing	20.66	21.35	217.60	0.50	39.19
Apartments low rise	2.43	2.40	24.46	0.06	4.41
Retirement community	1.94	1.66	16.91	0.04	3.05
Elementary school	3.50	1.65	16.32	0.04	2.92
City park	0.18	0.10	0.98	0.00	0.18
Regnl shop. center	14.60	15.22	148.20	0.34	26.74
General office building	0.34	0.27	2.73	0.01	0.51
Goverment office building	5.75	5.83	57.61	0.13	10.09
General light industry	2.10	2.14	21.38	0.05	3.98
TOTAL EMISSIONS (tons/yr)	51.49	50.61	506.19	1.16	91.07

Includes correction for passby trips. Does not include double counting adjustment for internal trips.

OPERATIONAL (Vehicle) EMISSION ESTIMATES

Season: Annual Analysis Year: 2025

EMFAC Version: EMFAC2002 (9/2002)

Summary of Land Uses:

Unit Type	Acreage	Trip	Rate	No. Units	Total Trips
Single family housing	1,141.00	9.09	trips/dwelling unit	4,726.0042	959.34
Apartments low rise	43.75	6.90	trips/dwelling unit	700.00 4,	830.00
Retirement community	180.00	3.71	trips/dwelling unit	900.00 3,	339.00
Elementary school		1.29	trips/students	3,200.00 4,	128.00
City park		1.59	trips/acres	148.00	235.32
Regnl shop. center		42.94	trips/1000 sq. ft.	962.2641,	319.44
General office building		3.32	trips/1000 sq. ft.	171.30	568.72
Government office building	g	68.93	trips/1000 sq. ft.	239.5816,	514.25
General light industry		6.97	trips/1000 sq. ft.	581.52 4,	053.19

Sum of Total Trips 117,947.26 Total Vehicle Miles Traveled 664,013.34 117,947.26

Vehicle Assumptions:

Fleet Mix:

Vehicle Type	Percent Type	Non-Catalyst	Catalyst	Diesel
Light Auto	53.50	0.00	100.00	0.00
Light Truck < 3,750 lb	s 15.70	0.00	99.40	0.60
Light Truck 3,751- 5,75	0 16.50	0.00	100.00	0.00
Med Truck 5,751-8,50	0 7.50	0.00	98.70	1.30
Lite-Heavy 8,501-10,00	0 1.00	0.00	80.00	20.00
Lite-Heavy 10,001-14,00	0 0.30	0.00	66.70	33.30
Med-Heavy 14,001-33,00	0 0.90	0.00	22.20	77.80
Heavy-Heavy 33,001-60,00	0 0.80	0.00	0.00	100.00
Line Haul > 60,000 lb	s 0.00	0.00	0.00	100.00
Urban Bus	0.20	0.00	50.00	50.00
Motorcycle	1.50	40.00	60.00	0.00
School Bus	0.10	0.00	0.00	100.00
Motor Home	2.00	0.00	90.00	10.00

	Residential			Commercial		
	Home-	Home-	Home-			
•	Work	Shop	Other	Commute	Non-Work	Customer
Urban Trip Length (miles)	10.8	2.0	7.5	9.5	7.4	7.4
Rural Trip Length (miles)	16.8	7.1	7.9	14.7	6.6	6.6
Trip Speeds (mph)	35.0	35.0	35.0	35.0	35.0	35.0
% of Trips - Residential	32.9	18.0	49.1			
% of Trips - Commercial (by	y land	use)				
Elementary school	-			20.0	10.0	70.0
City park				5.0	2.5	92.5
Regnl shop. center				2.0	1.0	97.0
General office building				35.0	17.5	47.5
Goverment office building				10.0	5.0	85.0
General light industry				50.0	25.0	25.0

Page: 4 02/14/2007 10:04 AM

Page: 5 02/14/2007 10:04 AM

MITIGATED OPERATIONAL EMISSIONS

	ROG	xOM	CO	SO2	PM10
Single family housing	18.86	19.17	195.45	0.45	35.20
Apartments low rise	2.16	2.08	21.18	0.05	3.82
Retirement community	1.60	1.25	12.70	0.03	2.29
Elementary school	3.35	1.49	14.75	0.03	2.64
City park	0.17	0.09	0.88	0.00	0.17
Regnl shop. center	13.25	13.75	133.87	0.30	24.15
General office building	0.31	0.25	2.46	0.01	0.46
Goverment office building	5.21	5.26	52.04	0.12	9.12
General light industry	1.93	1.93	19.32	0.05	3.59
TOTAL EMISSIONS (tons/yr)	46.84	45.27	452.65	1.03	81.43
PERCENTAGE REDUCTION %	9	11	11	11	11

Includes correction for passby trips.

Does not include double counting adjustment for internal trips.

OPERATIONAL (Vehicle) EMISSION ESTIMATES

Season: Annual Analysis Year: 2025

EMFAC Version: EMFAC2002 (9/2002)

Summary of Land Uses:

Unit Type	Acreage	Trip	Rate	No. Units	Total Trips
Single family housing Apartments low rise Retirement community Elementary school City park Regnl shop. center General office building Goverment office building General light industry	1,141.00 43.75 180.00	6.90 3.71 1.29 1.59 42.94 3.32 68.93	trips/dwelling unit trips/dwelling unit trips/students trips/students trips/1000 sq. ft. trips/1000 sq. ft. trips/1000 sq. ft. trips/1000 sq. ft.		,830.00 ,339.00 ,128.00 235.32 ,319.44 568.72 ,514.25
ocherar right industry		3.57	crips, roos bd. rc.	301.32 4	, 000.10

Sum of Total Trips 117,947.26
Total Vehicle Miles Traveled 664,013.34

Vehicle Assumptions:

Fleet Mix:

Vehicle Type	Percent Type	Non-Catalyst	Catalyst	Diesel
Light Auto	53.50	0.00	100.00	0.00
Light Truck < 3,750 lb	s 15.70	0.00	99.40	0.60
Light Truck 3,751- 5,75	0 16.50	0.00	100.00	0.00
Med Truck 5,751- 8,50	0 7.50	0.00	98.70	1.30
Lite-Heavy 8,501-10,00	0 1.00	0.00	80.00	20.00
Lite-Heavy 10,001-14,00	0.30	0.00	66.70	33.30
Med-Heavy 14,001-33,00	0.90	0.00	22.20	77.80
Heavy-Heavy 33,001-60,00	0.80	0.00	0.00	100.00
Line Haul > 60,000 lb	s 0.00	0.00	0.00	100.00
Urban Bus	0.20	0.00	50.00	50.00
Motorcycle	1.50	40.00	60.00	0.00
School Bus	0.10	0.00	0.00	100.00
Motor Home	2.00	0.00	90.00	10.00

		Residentia	L		Commercia	L
	Home- Work	Home- Shop	Home- Other	Commute	Non-Work	Customer
Urban Trip Length (miles)	10.8	2.0	7.5	9.5	7.4	7.4
Rural Trip Length (miles)	16.8	7.1	7.9	14.7	6.6	6.6
Trip Speeds (mph)	35.0	35.0	35.0	35.0	35.0	35.0
% of Trips - Residential	32.9	18.0	49.1			
<pre>% of Trips - Commercial () Elementary school City park Regnl shop. center General office building Government office building</pre>	•	use)		20.0 5.0 2.0 35.0	10.0 2.5 1.0 17.5 5.0	70.0 92.5 97.0 47.5 85.0

Page: 6 02/14/2007 10:04 AM

General light industry

50.0 25.0

25.0

Page: 7 02/14/2007 10:04 AM

MITIGATION OPTIONS SELECTED

Residential Mitigation Measures

Residential Mix of Uses Mitigation

Percent Reduction in Trips is 7.67% (calculated as a % of 9.57 trips/day)
Note that the above percent is applied to a baseline of 9.57 and that product is subtracted from the Unmitigated Trips

Inputs Selected:

The number of housing units within a 1/2 mile radius of the project, plus the number of residential units included in the project are 6578. The employment for the study area (within a 1/2 mile radius of the project) is 7894.

Residential Local-Serving Retail Mitigation

Percent Reduction in Trips is 2% (calculated as a % of 9.57 trips/day)
Note that the above percent is applied to a baseline of 9.57 and that product is subtracted from the Unmitigated Trips
Inputs Selected:

The Presence of Local-Serving Retail checkbox was selected.

Non-Residential Mitigation Measures

Non-Residential Mix of Uses Mitigation

Percent Reduction in Trips is 7.67%

Inputs Selected:

The number of housing units within a 1/2 mile radius of the project, plus the number of residential units included in the project are 6578.

The employment for the study area (within a 1/2 mile radius of the project) is 7894.

Non-Residential Local-Serving Retail Mitigation

Percent Reduction in Trips is 2%

Inputs Selected:

The Presence of Local-Serving Retail checkbox was selected.

Page: 8 02/14/2007 10:04 AM

Changes made to the default values for Land Use Trip Percentages

The Trip Rate and/or Acreage values for Single family housing have changed from the defaults 9.57/1575.33 to 9.09/1141

Changes made to the default values for Area

The area souce mitigation measure option switch changed from off to on. The natural gas single family usage rate changed from 6665.0 to 4094.1. The natural gas multi-family usage rate changed from 4011.5 to 2288.9. The wood stove percentage changed from 67 to 0. The natural gas fireplace percentage changed from 33 to 100. The landscape year changed from 2006 to 2020. The consumer product ROG pounds per person changed from 0.0171 to 0.0151.

Changes made to the default values for Operations

The mitigation option switch changed from off to on.
The operational emission year changed from 2006 to 2025.
The home based work selection item changed from 8 to 7.
The home based shopping selection item changed from 8 to 7.
The home based shopping urban trip length changed from 7.3 to 2.
The home based other selection item changed from 8 to 7.
The commercial based commute selection item changed from 8 to 7.
The commercial based non-work selection item changed from 8 to 7.
The commercial based customer selection item changed from 8 to 7.
The Res and Non-Res Mix of Uses Mitigation changed from off to on.
The Res and Non-Res Local-Serving Retail Mitigation changed from off to on.

Page: 1 02/14/2007 10:05 AM

URBEMIS 2002 For Windows 8.7.0

File Name: H:\ClientData\Castle and Cooke\Gateway Project Madera\GATEWAY AIR STUDY 8-17-06 (distrib Project Name: Gateway Village Operations Project Location: Non-Residential Template On-Road Motor Vehicle Emissions Based on EMFAC2002 version 2.2

SUMMARY REPORT (Tons/Year)

AREA SOURCE EMISSION ESTIMATE	S				
	ROG	NOx	CO	S02	PM10
TOTALS (tpy, unmitigated)	66.65	11.97	22.77	0.11	0.08
TOTALS (tpy, mitigated)	66.65	11.97	22.77	0.11	0.08
OPERATIONAL (VEHICLE) EMISSIO	N ESTIMAT	res			
	ROG	NOx	CO	S02	PM10
TOTALS (tpy, unmitigated)	77.37	80.58	801.83	1.25	98.57
TOTALS (tpy, mitigated)	70.48	72.28	719.19	1.12	88.41
SUM OF AREA AND OPERATIONAL E	MISSION E	ESTIMATES			
	ROG	NOx	CO	SO2	PM10
TOTALS (tpy, unmitigated)	144.03	92.55	824.60	1.36	98.64
TOTALS (tpy, mitigated)	137.13	84.26	741.96	1.23	88.48

Page: 2 02/14/2007 10:05 AM

URBEMIS 2002 For Windows 8.7.0

File Name: H:\ClientData\Castle and Cooke\Gateway Project Madera\GATEWAY AIR STUDY 8-17-06 (distrib Project Name: Gateway Village Operations Project Location: Non-Residential Template On-Road Motor Vehicle Emissions Based on EMFAC2002 version 2.2

DETAIL REPORT (Tons/Year)

AREA SOURCE EMISSION ESTIMATES	(Tons	per Year,	Unmitigated)		
Source	ROG	NOx	co	SO2	PM10
Natural Gas	0.89	11.70	6.18	0.00	0.02
Hearth	0.00	0.00	0.00	0.00	0.00
Landscaping	2.08	0.27	16.59	0.11	0.05
Consumer Prdcts	51.86	-	-	_	-
Architectural Coatings	11.83	-	_	_	_
TOTALS (tpy, unmitigated)	66.65	11.97	22.77	0.11	0.08
AREA SOURCE EMISSION ESTIMATES	(Tons	per Year,	Mitigated)		
Source	ROG	NOx	CO	S02	PM10
Natural Gas	0.89	11.70	6.18	0	0.02
Hearth	0.00	0.00	0.00	0.00	0.00
Landscaping	2.08	0.27	16.59	0.11	0.05
Consumer Prdcts	51.86	_	_	-	-
	31.00				
Architectural Coatings	11.83	-	-	-	-

Area Source Mitigation Measures

Page: 3 02/14/2007 10:05 AM

UNMITIGATED OPERATIONAL EMISSIONS

	ROG	NOx	CO	SO2	PM10
Single family housing	31.93	34.92	353.84	0.55	43.53
Apartments low rise	3.40	3.54	35.87	0.06	4.41
Retirement community	2.70	2.45	24.80	0.04	3.05
Elementary school	4.80	2.43	23.94	0.04	2.93
City park	0.25	0.15	1.44	0.00	0.18
Regnl shop. center	22.33	24.42	236.89	0.37	29.18
General office building	0.47	0.41	4.01	0.01	0.51
Goverment office building	8.06	8.58	84.42	0.13	10.11
General light industry	3.43	3.68	36.63	0.06	4.65
TOTAL EMISSIONS (tons/yr)	77.37	80.58	801.83	1.25	98.57

Includes correction for passby trips.

Does not include double counting adjustment for internal trips.

OPERATIONAL (Vehicle) EMISSION ESTIMATES

Analysis Year: 2020 Season: Annual

EMFAC Version: EMFAC2002 (9/2002)

Summary of Land Uses:

Unit Type	Acreage	Trip	Rate		No. Units	Total Trips
Single family housing Apartments low rise Retirement community Elementary school City park Regnl shop. center General office building Goverment office building General light industry	1,659.33 43.75 180.00	6.90 3.71 1.29 1.59 42.94 3.32 68.93	trips/dwelling trips/dwelling trips/students trips/acres trips/1000 sq. trips/1000 sq. trips/1000 sq. trips/1000 sq.	ft. ft. ft.	4,978.0047,700.00 4,900.00 3,3,200.00 4,148.00 1,048.3845,171.30 239.5816,678.44 4,	,830.00 ,339.00 ,128.00 235.32 ,017.44 568.72 ,514.25

Sum of Total Trips 127,000.91 Total Vehicle Miles Traveled 717,430.08

Vehicle Assumptions:

Fleet Mix:

Vehicle Type	Percent Type	Non-Catalyst	Catalyst	Diesel
Light Auto	54.40	0.40	99.40	0.20
Light Truck < 3,750 lbs	s 15.30	0.70	98.00	1.30
Light Truck 3,751- 5,75	0 16.40	0.60	98.80	0.60
Med Truck 5,751-8,50	0 7.30	0.00	98.60	1.40
Lite-Heavy 8,501-10,00	0 1.10	0.00	81.80	18.20
Lite-Heavy 10,001-14,00	0.30	0.00	66.70	33.30
Med-Heavy 14,001-33,00	0 1.00	0.00	20.00	80.00
Heavy-Heavy 33,001-60,00	0.80	0.00	0.00	100.00
Line Haul > 60,000 lbs	s 0.00	0.00	0.00	100.00
Urban Bus	0.20	0.00	50.00	50.00
Motorcycle	1.60	50.00	50.00	0.00
School Bus	0.10	0.00	0.00	100.00
Motor Home	1.50	0.00	93.30	6.70

	Residential			Commercial		
	Home-	Home-	Home-			
	Work	Shop	Other	Commute	Non-Work	Customer
Urban Trip Length (miles)	10.8	2.0	7.5	9.5	7.4	7.4
Rural Trip Length (miles)	16.8	7.1	7.9	14.7	6.6	6.6
Trip Speeds (mph)	35.0	35.0	35.0	35.0	35.0	35.0
% of Trips - Residential	32.9	18.0	49.1			
% of Trips - Commercial (by land	use)				
Elementary school	-			20.0	10.0	70.0
City park				5.0	2.5	92.5
Regnl shop. center				2.0	1.0	97.0
General office building				35.0	17.5	47.5
Goverment office building				10.0	5.0	85.0
General light industry				50.0	25.0	25.0

Page: 4 02/14/2007 10:05 AM

Page: 5 02/14/2007 10:05 AM

MITIGATED OPERATIONAL EMISSIONS

	ROG	NOx	CO	SO2	PM10
Single family housing	29.25	31.55	319.63	0.50	39.33
Apartments low rise	3.03	3.07	31.06	0.05	3.82
Retirement community	2.22	1.84	18.62	0.03	2.29
Elementary school	4.60	2.19	21.62	0.03	2.65
City park	0.23	0.13	1.30	0.00	0.17
Regnl shop. center	20.25	22.06	213.99	0.33	26.36
General office building	0.44	0.37	3.62	0.01	0.46
Goverment office building	7.30	7.75	76.26	0.12	9.13
General light industry	3.15	3.33	33.09	0.05	4.20
TOTAL EMISSIONS (tons/yr)	70.48	72.28	719.19	1.12	88.41
PERCENTAGE REDUCTION %	9	10	10	10	10

Includes correction for passby trips.

Does not include double counting adjustment for internal trips.

OPERATIONAL (Vehicle) EMISSION ESTIMATES

Analysis Year: 2020 Season: Annual

EMFAC Version: EMFAC2002 (9/2002)

Summary of Land Uses:

Unit Type	Acreage	Trip	Rate	No. Units	Total Trips
Single family housing Apartments low rise Retirement community Elementary school City park Regnl shop. center General office building Government office building General light industry	1,659.33 43.75 180.00	6.90 3.71 1.29 1.59 42.94 3.32 68.93	trips/dwelling unit trips/dwelling unit trips/dwelling unit trips/students trips/acres trips/1000 sq. ft. trips/1000 sq. ft. trips/1000 sq. ft. trips/1000 sq. ft.	4,978.0047 700.00 4 900.00 3 3,200.00 4 148.00 1,048.3845 171.30 239.5816 678.44 4	,830.00 ,339.00 ,128.00 235.32 ,017.44 568.72 ,514.25
ocherar right mausery		0.57	crips/1000 bq. ic.	070.44 4	, ,20.,3

Sum of Total Trips 127,000.91
Total Vehicle Miles Traveled 717,430.08

Vehicle Assumptions:

Fleet Mix:

Vehicle Type	Percent Type	Non-Catalyst	Catalyst	Diesel
Light Auto	54.40	0.40	$99.\overline{40}$	0.20
Light Truck < 3,750 lbs	s 15.30	0.70	98.00	1.30
Light Truck 3,751- 5,750	0 16.40	0.60	98.80	0.60
Med Truck 5,751-8,500	7.30	0.00	98.60	1.40
Lite-Heavy 8,501-10,000	1.10	0.00	81.80	18.20
Lite-Heavy 10,001-14,000	0.30	0.00	66.70	33.30
Med-Heavy 14,001-33,000	1.00	0.00	20.00	80.00
Heavy-Heavy 33,001-60,000	0.80	0.00	0.00	100.00
Line Haul > 60,000 lb:	s 0.00	0.00	0.00	100.00
Urban Bus	0.20	0.00	50.00	50.00
Motorcycle	1.60	50.00	50.00	0.00
School Bus	0.10	0.00	0.00	100.00
Motor Home	1.50	0.00	93.30	6.70

Traver Conditions						
		Residential			Commercial	L
	Home-	Home-	Home-			
	Work	Shop	Other	Commute	Non-Work	Customer
Urban Trip Length (miles)	10.8	2.0	7.5	9.5	7.4	7.4
Rural Trip Length (miles)	16.8	7.1	7.9	14.7	6.6	6.6
Trip Speeds (mph)	35.0	35.0	35.0	35.0	35.0	35.0
% of Trips - Residential	32.9	18.0	49.1			
% of Trips - Commercial (by land	l use)				
Elementary school	4			20.0	10.0	70.0
City park				5.0	2.5	92.5
Regnl shop. center				2.0	1.0	97.0
General office building				35.0	17.5	47.5
Goverment office building				10.0	5.0	85.0

Page: 6 02/14/2007 10:05 AM

General light industry

50.0 25.0 25.0

Page: 7 02/14/2007 10:05 AM

MITIGATION OPTIONS SELECTED

Residential Mitigation Measures _____

Residential Mix of Uses Mitigation

Percent Reduction in Trips is 7.67% (calculated as a % of 9.57 trips/day) Note that the above percent is applied to a baseline of 9.57 and that product is subtracted from the Unmitigated Trips

Inputs Selected:

The number of housing units within a 1/2 mile radius of the project, plus the number of residential units included in the project are 6578. The employment for the study area (within a 1/2 mile radius of the project) is 7894.

Residential Local-Serving Retail Mitigation

Percent Reduction in Trips is 2% (calculated as a % of 9.57 trips/day) Note that the above percent is applied to a baseline of 9.57 and that product is subtracted from the Unmitigated Trips Inputs Selected:

The Presence of Local-Serving Retail checkbox was selected.

Non-Residential Mitigation Measures ______

Non-Residential Mix of Uses Mitigation

Percent Reduction in Trips is 7.67%

Inputs Selected:

The number of housing units within a 1/2 mile radius of the project, plus the number of residential units included in the project are 6578. The employment for the study area (within a 1/2 mile radius of the project) is 7894.

Non-Residential Local-Serving Retail Mitigation

Percent Reduction in Trips is 2%

Inputs Selected:

The Presence of Local-Serving Retail checkbox was selected.

Page: 8 02/14/2007 10:05 AM

Changes made to the default values for Land Use Trip Percentages

Changes made to the default values for Area

The area souce mitigation measure option switch changed from off to on. The natural gas single family usage rate changed from 6665.0 to 4094.10. The natural gas multi-family usage rate changed from 4011.5 to 2288.9. The wood stove percentage changed from 67 to 0. The natural gas fireplace percentage changed from 33 to 100. The landscape year changed from 2006 to 2020. The consumer product ROG pounds per person changed from 0.0171 to 0.0151.

Changes made to the default values for Operations

The mitigation option switch changed from off to on.

The operational emission year changed from 2006 to 2020.

The home based work selection item changed from 8 to 7.

The home based shopping selection item changed from 8 to 7.

The home based shopping urban trip length changed from 7.3 to 2.

The home based other selection item changed from 8 to 7.

The commercial based commute selection item changed from 8 to 7.

The commercial based non-work selection item changed from 8 to 7.

The commercial based customer selection item changed from 8 to 7.

The Res and Non-Res Mix of Uses Mitigation changed from off to on.

The Res and Non-Res Local-Serving Retail Mitigation changed from off to on.

Page: 1 02/14/2007 10:06 AM

URBEMIS 2002 For Windows 8.7.0

File Name: H:\ClientData\Castle and Cooke\Gateway Project Madera\GATEWAY AIR STUDY 8-17-06 (distrib Project Name: Gateway Village Operations Project Location: Non-Residential Template On-Road Motor Vehicle Emissions Based on EMFAC2002 version 2.2

SUMMARY REPORT (Tons/Year)

AREA SOURCE EMISSION ESTIMAT	rc.

	ROG	NOx	CO	SO2	PM10
TOTALS (tpy, unmitigated)	66.65	11.97	22.77	0.11	0.08
TOTALS (tpy, mitigated)	66.65	11.97	22.77	0.11	0.08
OPERATIONAL (VEHICLE) EMISSIC		TES			
	ROG	NOx	CO	SO2	PM10
TOTALS (tpy, unmitigated)	55.23	54.66	546.72	1.25	98.39
TOTALS (tpy, mitigated)	50.34	49.03	490.38	1.12	88.25
SUM OF AREA AND OPERATIONAL E	MISSION 1	ESTIMATES			
	ROG	NOx	CO	SO2	PM10
TOTALS (tpy, unmitigated)	121.88	66.63	569.49	1.36	98.47
TOTALS (tpy, mitigated)	116.99	61.00	513.15	1.23	88.33

Page: 2 02/14/2007 10:06 AM

URBEMIS 2002 For Windows 8.7.0

File Name: H:\ClientData\Castle and Cooke\Gateway Project Madera\GATEWAY AIR STUDY 8-17-06 (distrib Project Name: Gateway Village Operations Project Location: Non-Residential Template On-Road Motor Vehicle Emissions Based on EMFAC2002 version 2.2

DETAIL REPORT (Tons/Year)

AREA SOURCE EMISSION ESTIMATES Source Natural Gas Hearth Landscaping Consumer Prdcts Architectural Coatings TOTALS (tpy, unmitigated)	(Tons p ROG 0.89 0.00 2.08 51.86 11.83 66.65	er Year, NOX 11.70 0.00 0.27 - 11.97	Unmitigated) CO 6.18 0.00 16.59 - 22.77	SO2 0.00 0.00 0.11 - 0.11	PM10 0.02 0.00 0.05 - 0.08
AREA SOURCE EMISSION ESTIMATES Source Natural Gas Hearth Landscaping Consumer Prdcts Architectural Coatings TOTALS (tpy, mitigated)	(Tons p ROG 0.89 0.00 2.08 51.86 11.83 66.65	ver Year, NOx 11.70 0.00 0.27 - - 11.97	Mitigated) CO 6.18 0.00 16.59 - - 22.77	SO2 0 0.00 0.11 - 0.11	PM10 0.02 0.00 0.05 - - 0.08

Area Source Mitigation Measures

Page: 3 02/14/2007 10:06 AM

UNMITIGATED OPERATIONAL EMISSIONS

	ROG	NOx	CO	SO2	PM10
Single family housing	22.74	23.67	241.30	0.55	43.46
Apartments low rise	2.43	2.40	24.46	0.06	4.41
Retirement community	1.94	1.66	16.91	0.04	3.05
Elementary school	3.50	1.65	16.32	0.04	2.92
City park	0.18	0.10	0.98	0.00	0.18
Regnl shop. center	15.91	16.58	161.46	0.37	29.13
General office building	0.34	0.27	2.73	0.01	0.51
Goverment office building	5.75	5.83	57.61	0.13	10.09
General light industry	2.45	2.50	24.95	0.06	4.64
TOTAL EMISSIONS (tons/yr)	55.23	54.66	546.72	1.25	98.39

Includes correction for passby trips.

Does not include double counting adjustment for internal trips.

OPERATIONAL (Vehicle) EMISSION ESTIMATES

Analysis Year: 2025 Season: Annual

EMFAC Version: EMFAC2002 (9/2002)

Summary of Land Uses:

Unit Type	Acreage	Trip	Rate	No. Units	Total Trips
Single family housing	1,659.33		trips/dwelling unit	4,978.0047	,639.46
Apartments low rise	43.75	6.90	trips/dwelling unit	700.00 4	,830.00
Retirement community	180.00	3.71	trips/dwelling unit	900.00 3	,339.00
Elementary school		1.29	trips/students	3,200.00 4	,128.00
City park		1.59	trips/acres	148.00	235.32
Regnl shop. center		42.94	trips/1000 sq. ft.	1,048.3845	,017.44
General office building		3.32	trips/1000 sq. ft.	171.30	568.72
Goverment office building	ng	68.93	trips/1000 sq. ft.	239.5816	,514.25
General light industry	_	6.97	trips/1000 sq. ft.	678.44 4	,728.73

Sum of Total Trips 127,000.91 Total Vehicle Miles Traveled 717,430.08

Vehicle Assumptions:

Fleet Mix:

Vehicle Type	Percent Type	Non-Catalyst	Catalyst	Diesel
Light Auto	53.50	0.00	100.00	0.00
Light Truck < 3,750 lbs	s 15.70	0.00	99.40	0.60
Light Truck 3,751- 5,75	0 16.50	0.00	100.00	0.00
Med Truck 5,751-8,500	7.50	0.00	98.70	1.30
Lite-Heavy 8,501-10,000	1.00	0.00	80.00	20.00
Lite-Heavy 10,001-14,000	0.30	0.00	66.70	33.30
Med-Heavy 14,001-33,000	0.90	0.00	22.20	77.80
Heavy-Heavy 33,001-60,000	0.80	0.00	0.00	100.00
Line Haul > 60,000 lb:	3 0.00	0.00	0.00	100.00
Urban Bus	0.20	0.00	50.00	50.00
Motorcycle	1.50	40.00	60.00	0.00
School Bus	0.10	0.00	0.00	100.00
Motor Home	2.00	0.00	90.00	10.00

rraver conditions						
		Residential	•		Commercia]	L
	Home-	Home-	Home-			
	Work	Shop	Other	Commute	Non-Work	Customer
Urban Trip Length (miles)	10.8	2.0	7.5	9.5	7.4	7.4
Rural Trip Length (miles)	16.8	7.1	7.9	14.7	6.6	6.6
Trip Speeds (mph)	35.0	35.0	35.0	35.0	35.0	35.0
% of Trips - Residential	32.9	18.0	49.1			
% of Trips - Commercial (bv land	use)				
Elementary school				20.0	10.0	70.0
City park o				5.0	2.5	92.5
Regnl shop. center				2.0	1.0	97.0
General office building				35.0	17.5	47.5
Goverment office building				10.0	5.0	85.0
General light industry				50.0	25.0	25.0

Page: 4 02/14/2007 10:06 AM

Page: 5 02/14/2007 10:06 AM

MITIGATED OPERATIONAL EMISSIONS

	ROG	NOx	CO	SO2	PM10
Single family housing	20.85	21.38	217.98	0.50	39.26
Apartments low rise	2.16	2.08	21.18	0.05	3.82
Retirement community	1.60	1.25	12.70	0.03	2.29
Elementary school	3.35	1.49	14.75	0.03	2.64
City park	0.17	0.09	0.88	0.00	0.17
Regnl shop. center	14.43	14.98	145.85	0.33	26.32
General office building	0.31	0.25	2.46	0.01	0.46
Goverment office building	5.21	5.26	52.04	0.12	9.12
General light industry	2.25	2.25	22.54	0.05	4.19
TOTAL EMISSIONS (tons/yr)	50.34	49.03	490.38	1.12	88.25
PERCENTAGE REDUCTION %	9	10	10	10	10

Includes correction for passby trips.

Does not include double counting adjustment for internal trips.

OPERATIONAL (Vehicle) EMISSION ESTIMATES

Analysis Year: 2025 Season: Annual

EMFAC Version: EMFAC2002 (9/2002)

Summary of Land Uses:

Unit Type	Acreage	Trip	Rate	No. Units	Total Trips
Single family housing Apartments low rise Retirement community Elementary school City park Regnl shop. center General office building	1,659.33 43.75 180.00	6.90 3.71 1.29 1.59 42.94	trips/dwelling unit trips/dwelling unit trips/dwelling unit trips/students trips/acres trips/1000 sq. ft. trips/1000 sq. ft.		,830.00 ,339.00 ,128.00 235.32 ,017.44
Government office building General light industry	ng	68.93	trips/1000 sq. ft. trips/1000 sq. ft.	239.5816 678.44 4	,514.25

Sum of Total Trips 127,000.91 Total Vehicle Miles Traveled 717,430.08

Vehicle Assumptions:

Fleet Mix:

Vehicle Type	Percent Type	Non-Catalyst	Catalyst	Diesel
Light Auto	53.50	0.00	100.00	0.00
Light Truck < 3,750 lk	s 15.70	0.00	99.40	0.60
Light Truck 3,751- 5,75	0 16.50	0.00	100.00	0.00
Med Truck 5,751-8,50	0 7.50	0.00	98.70	1.30
Lite-Heavy 8,501-10,00	0 1.00	0.00	80.00	20.00
Lite-Heavy 10,001-14,00	0 0.30	0.00	66.70	33.30
Med-Heavy 14,001-33,00	0 0.90	0.00	22.20	77.80
Heavy-Heavy 33,001-60,00	0 0.80	0.00	0.00	100.00
Line Haul > 60,000 lb	s 0.00	0.00	0.00	100.00
Urban Bus	0.20	0.00	50.00	50.00
Motorcycle	1.50	40.00	60.00	0.00
School Bus	0.10	0.00	0.00	100.00
Motor Home	2.00	0.00	90.00	10.00

Travel Conditions						
		Residential			Commercia.	L
	Home-	Home-	Home-			
	Work	Shop	Other	Commute	Non-Work	Customer
Urban Trip Length (miles)	10.8	2.0	7.5	9.5	7.4	7.4
Rural Trip Length (miles)	16.8	7.1	7.9	14.7	6.6	6.6
Trip Speeds (mph)	35.0	35.0	35.0	35.0	35.0	35.0
<pre>% of Trips - Residential</pre>	32.9	18.0	49.1			
% of Trips - Commercial (bv land	l use)				
Elementary school				20.0	10.0	70.0
City park				5.0	2.5	92.5
Regnl shop. center				2.0	1.0	97.0
General office building				35.0	17.5	47.5
Goverment office building				10.0	5.0	85.0

Page: 6 02/14/2007 10:06 AM

General light industry

50.0 25.0 25.0

Page: 7 02/14/2007 10:06 AM

MITIGATION OPTIONS SELECTED

Residential Mitigation Measures ______

Residential Mix of Uses Mitigation

Percent Reduction in Trips is 7.67% (calculated as a % of 9.57 trips/day) Note that the above percent is applied to a baseline of 9.57 and that product is subtracted from the Unmitigated Trips Inputs Selected:

The number of housing units within a 1/2 mile radius of the project, plus the number of residential units included in the project are 6578. The employment for the study area (within a 1/2 mile radius of the project) is 7894.

Residential Local-Serving Retail Mitigation

Percent Reduction in Trips is 2% (calculated as a % of 9.57 trips/day) Note that the above percent is applied to a baseline of 9.57 and that product is subtracted from the Unmitigated Trips Inputs Selected:

The Presence of Local-Serving Retail checkbox was selected.

Non-Residential Mitigation Measures ______

Non-Residential Mix of Uses Mitigation

Percent Reduction in Trips is 7.67%

Inputs Selected:

The number of housing units within a 1/2 mile radius of the project, plus the number of residential units included in the project are 6578.

The employment for the study area (within a 1/2 mile radius of the project) is 7894.

Non-Residential Local-Serving Retail Mitigation

Percent Reduction in Trips is 2%

Inputs Selected:

The Presence of Local-Serving Retail checkbox was selected.

Page: 8 02/14/2007 10:06 AM

Changes made to the default values for Land Use Trip Percentages

Changes made to the default values for Area

The area souce mitigation measure option switch changed from off to on. The natural gas single family usage rate changed from 6665.0 to 4094.1. The natural gas multi-family usage rate changed from 4011.5 to 2288.9. The wood stove percentage changed from 67 to 0. The natural gas fireplace percentage changed from 33 to 100. The landscape year changed from 2006 to 2020. The consumer product ROG pounds per person changed from 0.0171 to 0.0151.

Changes made to the default values for Operations

The mitigation option switch changed from off to on.

The operational emission year changed from 2006 to 2025.

The home based work selection item changed from 8 to 7.

The home based shopping selection item changed from 8 to 7.

The home based shopping urban trip length changed from 7.3 to 2.

The home based other selection item changed from 8 to 7.

The commercial based commute selection item changed from 8 to 7.

The commercial based non-work selection item changed from 8 to 7.

The commercial based customer selection item changed from 8 to 7.

The Res and Non-Res Mix of Uses Mitigation changed from off to on.

The Res and Non-Res Local-Serving Retail Mitigation changed from off to on.

Page: 1 02/14/2007 10:10 AM

URBEMIS 2002 For Windows 8.7.0

File Name: H:\ClientData\Castle and Cooke\Gateway Project Madera\GATEWAY AIR STUDY 8-17-06 (distrib Project Name: Gateway Village Operations Project Location: Non-Residential Template On-Road Motor Vehicle Emissions Based on EMFAC2002 version 2.2

SUMMARY REPORT (Tons/Year)

AREA SOURCE EMISSION ESTIMATE	ES				
	ROG	NOx	CO	SO2	PM1.0
TOTALS (tpy, unmitigated)	66.88	12.13	22.90	0.11	0.08
TOTALS (tpy, mitigated)	66.88	12.13	22.90	0.11	0.08
TOTALS (tpy, mitigated)	00.00	12.13	22.90	0.11	0.08
ODED 1 (1991 - 1					
OPERATIONAL (VEHICLE) EMISSIC	ON ESTIMA	ATES			
	ROG	NOx	CO	SO2	PM10
TOTALS (tpy, unmitigated)	79.72	83.13	826.75	1.29	101.65
TOTALS (tpy, mitigated)	72.61	74.59	741.70	1.16	91.20
SUM OF AREA AND OPERATIONAL E	MTCCTON	ESTIMATES			
DON OF ARBA AND OFERATIONAL E				202	D144 0
	ROG	NOx	CO	SO2	PM10
TOTALS (tpy, unmitigated)	146.60	95.26	849.64	1.39	101.73
TOTALS (tpy, mitigated)	139.49	86.72	764.59	1.26	91.27
		-			

Page: 2 02/14/2007 10:10 AM

URBEMIS 2002 For Windows 8.7.0

File Name: H:\ClientData\Castle and Cooke\Gateway Project Madera\GATEWAY AIR STUDY 8-17-06 (distrib Project Name: Gateway Village Operations Project Location: Non-Residential Template On-Road Motor Vehicle Emissions Based on EMFAC2002 version 2.2

DETAIL REPORT

(Tons/Year)

AREA SOURCE EMISSION ESTIMATES	(Tons pe	er Year,	Unmitigated)		
Source	ROG	NOx	CO	SO2	PM10
Natural Gas	0.90	11.86	6.31	0.00	0.02
Hearth	0.00	0.00	0.00	0.00	0.00
Landscaping	2.08	0.27	16.59	0.11	0.05
Consumer Prdcts	51.86	~	-	_	_
Architectural Coatings	12.04	-	-	-	-
TOTALS (tpy, unmitigated)	66.88	12.13	22.90	0.11	0.08
AREA SOURCE EMISSION ESTIMATES	(Tons pe	er Year,	Mitigated)		
AREA SOURCE EMISSION ESTIMATES Source	(Tons pe	er Year, NOx	Mitigated) CO	SO2	PM10
	~		_	SO2 0	PM10 0.02
Source	ROG	NOx	CO		
Source Natural Gas	ROG 0.90	NOx 11.86	CO 6.31	0	0.02
Source Natural Gas Hearth	ROG 0.90 0.00	NOx 11.86 0.00	CO 6.31 0.00	0.00	0.02 0.00
Source Natural Gas Hearth Landscaping	ROG 0.90 0.00 2.08	NOx 11.86 0.00	CO 6.31 0.00	0.00	0.02 0.00

Area Source Mitigation Measures

Page: 3 02/14/2007 10:10 AM

UNMITIGATED OPERATIONAL EMISSIONS

	ROG	NOx	CO	SO2	PM10
Single family housing	31.93	34.92	353.84	0.55	43.53
Apartments low rise	3.40	3.54	35.87	0.06	4.41
Retirement community	2.70	2.45	24.80	0.04	3.05
Elementary school	4.80	2.43	23.94	0.04	2.93
City park	0.25	0.15	1.44	0.00	0.18
Regnl shop. center	24.18	26.45	256.57	0.40	31.61
General office building	0.47	0.41	4.01	0.01	0.51
Goverment office building	8.06	8.58	84.42	0.13	10.11
General light industry	3.92	4.21	41.86	0.07	5.31
TOTAL EMISSIONS (tons/yr)	79.72	83.13	826.75	1.29	101.65

Includes correction for passby trips.

Does not include double counting adjustment for internal trips.

OPERATIONAL (Vehicle) EMISSION ESTIMATES

Analysis Year: 2020 Season: Annual

EMFAC Version: EMFAC2002 (9/2002)

Summary of Land Uses:

Unit Type	Acreage	Trip	Rate	No. Units	Total Trips
Single family housing	1,659.33	9.57	trips/dwelling unit	4,978.0047	,639.46
Apartments low rise	43.75	6.90	trips/dwelling unit	700.00 4	,830.00
Retirement community	180.00	3.71	trips/dwelling unit	900.00 3	,339.00
Elementary school		1.29	trips/students	3,200.00 4	,128.00
City park		1.59	trips/acres	148.00	235.32
Regnl shop. center		42.94	trips/1000 sq. ft.	1,135.5048	,758.37
General office building		3.32	trips/1000 sq. ft.	171.30	568.72
Goverment office building	ng	68.93	trips/1000 sq. ft.	239.5816	,514.25
General light industry		6.97	trips/1000 sq. ft.	775.36 5	,404.26

Sum of Total Trips 131,417.37 Total Vehicle Miles Traveled 739,926.55

Vehicle Assumptions:

Fleet Mix:

Vehicle Type	Percent Type	Non-Catalyst	Catalyst	Diesel
Light Auto	54.40	0.40	99.40	0.20
Light Truck < 3,750 lbs	15.30	0.70	98.00	1.30
Light Truck 3,751- 5,750	0 16.40	0.60	98.80	0.60
Med Truck 5,751-8,500	7.30	0.00	98.60	1.40
Lite-Heavy 8,501-10,000	0 1.10	0.00	81.80	18.20
Lite-Heavy 10,001-14,000	0.30	0.00	66.70	33.30
Med-Heavy 14,001-33,00	1.00	0.00	20.00	80.00
Heavy-Heavy 33,001-60,000	0.80	0.00	0.00	100.00
Line Haul > 60,000 lbs	3 0.00	0.00	0.00	100.00
Urban Bus	0.20	0.00	50.00	50.00
Motorcycle	1.60	50.00	50.00	0.00
School Bus	0.10	0.00	0.00	100.00
Motor Home	1.50	0.00	93.30	6.70

	Residential			Commercial		
	Home-	Home-	Home-			
	Work	Shop	Other	Commute	Non-Work	Customer
Urban Trip Length (miles)	10.8	2.0	7.5	9.5	7.4	7.4
Rural Trip Length (miles)	16.8	7.1	7.9	14.7	6.6	6.6
Trip Speeds (mph)	35.0	35.0	35.0	35.0	35.0	35.0
% of Trips - Residential	32.9	18.0	49.1			
% of Trips - Commercial (bv land	use)				
Elementary school	2			20.0	10.0	70.0
City park				5.0	2.5	92.5
Regnl shop. center				2.0	1.0	97.0
General office building				35.0	17.5	47.5
Goverment office building				10.0	5.0	85.0
General light industry				50.0	25.0	25.0

Page: 4 02/14/2007 10:10 AM Page: 5 02/14/2007 10:10 AM

MITIGATED OPERATIONAL EMISSIONS

	ROG	NOx	CO	SO2	PM10
Single family housing	29.25	31.55	319.63	0.50	39.33
Apartments low rise	3.03	3.07	31.06	0.05	3.82
Retirement community	2.22	1.84	18.62	0.03	2.29
Elementary school	4.60	2.19	21.62	0.03	2.65
City park	0.23	0.13	1.30	0.00	0.17
Regnl shop. center	21.94	23.89	231.77	0.36	28.55
General office building	0.44	0.37	3.62	0.01	0.46
Goverment office building	7.30	7.75	76.26	0.12	9.13
General light industry	3.61	3.80	37.82	0.06	4.80
TOTAL EMISSIONS (tons/yr)	72.61	74.59	741.70	1.16	91.20
PERCENTAGE REDUCTION %	9	10	10	10	10

Includes correction for passby trips.

Does not include double counting adjustment for internal trips.

OPERATIONAL (Vehicle) EMISSION ESTIMATES

Analysis Year: 2020 Season: Annual

EMFAC Version: EMFAC2002 (9/2002)

Summary of Land Uses:

Unit Type	Acreage	Trip	Rate	No. Units	Total Trips
Single family housing	1,659.33		trips/dwelling unit		•
Apartments low rise	43.75	6.90	trips/dwelling unit	700.00 4	,830.00
Retirement community	180.00	3.71	trips/dwelling unit	900.00 3	,339.00
Elementary school		1.29	trips/students	3,200.00 4	,128.00
City park		1.59	trips/acres	148.00	235.32
Regnl shop. center		42.94	trips/1000 sq. ft.	1,135.5048	,758.37
General office building		3.32	trips/1000 sq. ft.	171.30	568.72
Goverment office building	ng	68.93	trips/1000 sq. ft.	239.5816	,514.25
General light industry	-	6.97	trips/1000 sq. ft.	775.36 5	,404.26

Sum of Total Trips 131,417.37 Total Vehicle Miles Traveled 739,926.55

Vehicle Assumptions:

Fleet Mix:

Vehicle Type	Percent Type	Non-Catalyst	Catalyst	Diesel
Light Auto	54.40	0.40	99.40	0.20
Light Truck < 3,750 lb	s 15.30	0.70	98.00	1.30
Light Truck 3,751- 5,75	0 16.40	0.60	98.80	0.60
Med Truck 5,751-8,50	0 7.30	0.00	98.60	1.40
Lite-Heavy 8,501-10,00	0 1.10	0.00	81.80	18.20
Lite-Heavy 10,001-14,00	0 0.30	0.00	66.70	33.30
Med-Heavy 14,001-33,00	0 1.00	0.00	20.00	80.00
Heavy-Heavy 33,001-60,00	0 0.80	0.00	0.00	100.00
Line Haul > 60,000 lb	s 0.00	0.00	0.00	100.00
Urban Bus	0.20	0.00	50.00	50.00
Motorcycle	1.60	50.00	50.00	0.00
School Bus	0.10	0.00	0.00	100.00
Motor Home	1.50	0.00	93.30	6.70

Travel Conditions						
		Residential			Commercial	
	Home-	Home-	Home-			
	Work	Shop	Other	Commute	Non-Work (Customer
Urban Trip Length (miles)	10.8	2.0	7.5	9.5	7.4	7.4
Rural Trip Length (miles)	16.8	7.1	7.9	14.7	6.6	6.6
Trip Speeds (mph)	35.0	35.0	35.0	35.0	35.0	35.0
% of Trips - Residential	32.9	18.0	49.1			
% of Trips - Commercial (bv land	use)				
Elementary school	•	•		20.0	10.0	70.0
City park				5.0	2.5	92.5
Regnl shop. center				2.0	1.0	97.0
General office building				35.0	17.5	47.5
Goverment office building				10.0	5.0	85.0

Page: 6 02/14/2007 10:10 AM

General light industry

50.0

25.0

25.0

.

Page: 7 02/14/2007 10:10 AM

MITIGATION OPTIONS SELECTED

Residential Mitigation Measures ------

Residential Mix of Uses Mitigation

Percent Reduction in Trips is 7.67% (calculated as a % of 9.57 trips/day)
Note that the above percent is applied to a baseline of 9.57 and that product is subtracted from the Unmitigated Trips

Inputs Selected:

The number of housing units within a 1/2 mile radius of the project, plus the number of residential units included in the project are 6578. The employment for the study area (within a 1/2 mile radius of the project) is 7894.

Residential Local-Serving Retail Mitigation

Percent Reduction in Trips is 2% (calculated as a % of 9.57 trips/day) Note that the above percent is applied to a baseline of 9.57 and that product is subtracted from the Unmitigated Trips Inputs Selected:

The Presence of Local-Serving Retail checkbox was selected.

Non-Residential Mitigation Measures

Non-Residential Mix of Uses Mitigation

Percent Reduction in Trips is 7.67%

Inputs Selected:

The number of housing units within a 1/2 mile radius of the project, plus the number of residential units included in the project are 6578. The employment for the study area (within a 1/2 mile radius of the project) is 7894.

Non-Residential Local-Serving Retail Mitigation

Percent Reduction in Trips is 2%

Inputs Selected:

The Presence of Local-Serving Retail checkbox was selected.

Page: 8 02/14/2007 10:10 AM

Changes made to the default values for Land Use Trip Percentages

Changes made to the default values for Area

The area souce mitigation measure option switch changed from off to on. The natural gas single family usage rate changed from 6665.0 to 4094.1. The natural gas multi-family usage rate changed from 4011.5 to 2288.9. The wood stove percentage changed from 67 to 0. The natural gas fireplace percentage changed from 33 to 100. The landscape year changed from 2006 to 2020. The consumer product ROG pounds per person changed from 0.0171 to 0.0151.

Changes made to the default values for Operations

The mitigation option switch changed from off to on.

The operational emission year changed from 2006 to 2020.

The home based work selection item changed from 8 to 7.

The home based shopping selection item changed from 8 to 7.

The home based shopping urban trip length changed from 7.3 to 2.

The home based other selection item changed from 8 to 7.

The commercial based commute selection item changed from 8 to 7.

The commercial based non-work selection item changed from 8 to 7.

The commercial based customer selection item changed from 8 to 7.

The Res and Non-Res Mix of Uses Mitigation changed from off to on.

The Res and Non-Res Local-Serving Retail Mitigation changed from off to on.

Page: 1 02/14/2007 10:11 AM

URBEMIS 2002 For Windows 8.7.0

File Name: H:\ClientData\Castle and Cooke\Gateway Project Madera\GATEWAY AIR STUDY 8-17-06 (distrib

S02

0.11

PM10

0.08

Project Name: Gateway Village Operations
Project Location: Non-Residential Template

On-Road Motor Vehicle Emissions Based on EMFAC2002 version 2.2

SUMMARY REPORT (Tons/Year)

AREA SOURCE EMISSION ESTIMATES			
	ROG	NOx	CO
TOTALS (tpy, unmitigated)	66.88	12.13	22.90
TOTALS (tpy, mitigated)	66.88	12.13	22.90

OPERATIONAL (VEHICLE) EMISSION	ESTIMATES				
	ROG	NOx	CO	SO2	PM10
TOTALS (tpy, unmitigated)	56.90	56.39	563.71	1.29	101.48
TOTALS (tpy, mitigated)	51.86	50.60	505.71	1.16	91.04

SUM OF AREA AND OPERATIONAL	EMISSION	ESTIMATES			
	ROG	NOx	CO	SO2	PM10
TOTALS (tpy, unmitigated)	123.78	68.52	586.61	1.39	101.55
TOTALS (tpy, mitigated)	118.74	62.72	528.61	1.26	91.11

Page: 2 02/14/2007 10:11 AM

URBEMIS 2002 For Windows 8.7.0

H:\ClientData\Castle and Cooke\Gateway Project Madera\GATEWAY AIR STUDY 8-17-06 (distrib Gateway Village Operations Non-Residential Template File Name:

Project Name: Project Location:

On-Road Motor Vehicle Emissions Based on EMFAC2002 version 2.2

DETAIL REPORT (Tons/Year)

AREA SOURCE EMISSION ESTIMATES	(Tons	per Year,	Unmitigated)	
Source	ROG	NOx	CO	SO2	PM10
Natural Gas	0.90	11.86	6.31	0.00	0.02
Hearth	0.00	0.00	0.00	0.00	0.00
Landscaping	2.08	0.27	16.59	0.11	0.05
Consumer Prdcts	51.86	-	-	-	-
Architectural Coatings	12.04	-	-	-	-
TOTALS (tpy, unmitigated)	66.88	12.13	22.90	0.11	0.08
AREA SOURCE EMISSION ESTIMATES	(Tons	per Year,	Mitigated)		
Source	(Tons ROG	per Year, NOx	Mitigated) CO	SO2	PM10
	•	-	_	SO2 0	PM10 0.02
Source	ROG	NOx	co		
Source Natural Gas	ROG 0.90	NOx 11.86	CO 6.31	0	0.02
Source Natural Gas Hearth	ROG 0.90 0.00	NOx 11.86 0.00	CO 6.31 0.00	0.00	0.02 0.00
Source Natural Gas Hearth Landscaping	ROG 0.90 0.00 2.08	NOx 11.86 0.00	CO 6.31 0.00	0.00	0.02 0.00

Area Source Mitigation Measures

Page: 3 02/14/2007 10:11 AM

UNMITIGATED OPERATIONAL EMISSIONS

	ROG	NOx	CO	SO2	PM10
Single family housing	22.74	23.67	241.30	0.55	43.46
Apartments low rise	2.43	2.40	24.46	0.06	4.41
Retirement community	1.94	1.66	16.91	0.04	3.05
Elementary school	3.50	1.65	16.32	0.04	2.92
City park	0.18	0.10	0.98	0.00	0.18
Regnl shop. center	17.23	17.96	174.88	0.40	31.55
General office building	0.34	0.27	2.73	0.01	0.51
Goverment office building	5.75	5.83	57.61	0.13	10.09
General light industry	2.80	2.85	28.51	0.07	5.31
TOTAL EMISSIONS (tons/yr)	56.90	56.39	563.71	1.29	101.48

Includes correction for passby trips.

Does not include double counting adjustment for internal trips.

OPERATIONAL (Vehicle) EMISSION ESTIMATES

Analysis Year: 2025 Season: Annual

EMFAC Version: EMFAC2002 (9/2002)

Summary of Land Uses:

Unit Type	Acreage	Trip	Rate		No. Units	Total Trips
Single family housing	1,659.33		trips/dwelling		4,978.0047	,
Apartments low rise	43.75		trips/dwelling		700.00 4	,830.00
Retirement community	180.00	3.71	trips/dwelling	y unit	900.00 3	,339.00
Elementary school		1.29	trips/students	3	3,200.00 4	,128.00
City park		1.59	trips/acres		148.00	235.32
Regnl shop. center		42.94	trips/1000 sq.	ft.	1,135.5048	,758.37
General office building		3.32	trips/1000 sq.	ft.	171.30	568.72
Government office building	g	68.93	trips/1000 sq.	ft.	239.5816	,514.25
General light industry		6.97	trips/1000 sq.	ft.	775.36 5	,404.26

Sum of Total Trips 131,417.37
Total Vehicle Miles Traveled 739,926.55

Vehicle Assumptions:

Fleet Mix:

Vehicle Type	Percent Type	Non-Catalyst	Catalyst	Diesel
Light Auto	53.50	0.00	100.00	0.00
Light Truck < 3,750 lb	s 15.70	0.00	99.40	0.60
Light Truck 3,751- 5,75	0 16.50	0.00	100.00	0.00
Med Truck 5,751-8,50	0 7.50	0.00	98.70	1.30
Lite-Heavy 8,501-10,00	0 1.00	0.00	80.00	20.00
Lite-Heavy 10,001-14,00	0.30	0.00	66.70	33.30
Med-Heavy 14,001-33,00	0.90	0.00	22.20	77.80
Heavy-Heavy 33,001-60,00	0.80	0.00	0.00	100.00
Line Haul > 60,000 lb	s 0.00	0.00	0.00	100.00
Urban Bus	0.20	0.00	50.00	50.00
Motorcycle	1.50	40.00	60.00	0.00
School Bus	0.10	0.00	0.00	100.00
Motor Home	2.00	0.00	90.00	10.00

Travel Conditions						
		Residential			Commercial	L
	Home-	Home-	Home-			
	Work	Shop	Other	Commute	Non-Work	Customer
Urban Trip Length (miles)	10.8	2.0	7.5	9.5	7.4	7.4
Rural Trip Length (miles)	16.8	7.1	7.9	14.7	6.6	6.6
Trip Speeds (mph)	35.0	35.0	35.0	35.0	35.0	35.0
% of Trips - Residential	32.9	18.0	49.1			
% of Tring Commorgial (h land					
% of Trips - Commercial (by rand	use)		20.0	10.0	70.0
Elementary school				20.0	10.0	70.0
City park				5.0	2.5	92.5
Regnl shop. center				2.0	1.0	97.0
General office building				35.0	17.5	47.5
Government office building				10.0	5.0	85.0
General light industry				50.0	25.0	25.0

Page: 4 02/14/2007 10:11 AM

Page: 5 02/14/2007 10:11 AM

MITIGATED OPERATIONAL EMISSIONS

	ROG	NOx	CO	SO2	PM10
Single family housing	20.85	21.38	217.98	0.50	39.26
Apartments low rise	2.16	2.08	21.18	0.05	3.82
Retirement community	1.60	1.25	12.70	0.03	2.29
Elementary school	3.35	1.49	14.75	0.03	2.64
City park	0.17	0.09	0.88	0.00	0.17
Regnl shop. center	15.63	16.22	157.97	0.36	28.50
General office building	0.31	0.25	2.46	0.01	0.46
Goverment office building	5.21	5.26	52.04	0.12	9.12
General light industry	2.58	2.58	25.76	0.06	4.79
TOTAL EMISSIONS (tons/yr)	51.86	50.60	505.71	1.16	91.04
PERCENTAGE REDUCTION %	9	10	10	10	10

Includes correction for passby trips.

Does not include double counting adjustment for internal trips.

OPERATIONAL (Vehicle) EMISSION ESTIMATES

Analysis Year: 2025 Season: Annual

EMFAC Version: EMFAC2002 (9/2002)

Summary of Land Uses:

Unit Type	Acreage	Trip	Rate		No. Units	Total Trips
Single family housing Apartments low rise Retirement community Elementary school City park Regnl shop. center General office building Government office building General light industry	1,659.33 43.75 180.00	6.90 3.71 1.29 1.59 42.94 3.32 68.93	trips/dwellin trips/dwellin trips/dwellin trips/student trips/acres trips/1000 so trips/1000 so trips/1000 so trips/1000 so	ng unit ng unit ts q. ft. q. ft. q. ft.	4,978.0047, 700.00 4, 900.00 3, 3,200.00 4, 148.00 1,135.5048, 171.30 239.5816, 775.36 5,	830.00 339.00 128.00 235.32 758.37 568.72

Sum of Total Trips Total Vehicle Miles Traveled 131,417.37 739,926.55

Vehicle Assumptions:

Fleet Mix:

Vehicle Type	Percent Type	Non-Catalyst	Catalyst	Diesel
Light Auto	53.50	0.00	100.00	0.00
Light Truck < 3,750 lb	s 15.70	0.00	99.40	0.60
Light Truck 3,751- 5,75	0 16.50	0.00	100.00	0.00
Med Truck 5,751-8,50	0 7.50	0.00	98.70	1.30
Lite-Heavy 8,501-10,00	0 1.00	0.00	80.00	20.00
Lite-Heavy 10,001-14,00	0.30	0.00	66.70	33.30
Med-Heavy 14,001-33,00	0.90	0.00	22.20	77.80
Heavy-Heavy 33,001-60,00	0.80	0.00	0.00	100.00
Line Haul > 60,000 lb:	s 0.00	0.00	0.00	100.00
Urban Bus	0.20	0.00	50.00	50.00
Motorcycle	1.50	40.00	60.00	0.00
School Bus	0.10	0.00	0.00	100.00
Motor Home	2.00	0.00	90.00	10.00

Travel Conditions

Traver Conditions						
		Residential			Commercial	
	Home-	Home-	Home-			
	Work	Shop	Other	Commute	Non-Work	Customer
Urban Trip Length (miles)	10.8	2.0	7.5	9.5	7.4	7.4
Rural Trip Length (miles)	16.8	7.1	7.9	14.7	6.6	6.6
Trip Speeds (mph)	35.0	35.0	35.0	35.0	35.0	35.0
% of Trips - Residential	32.9	18.0	49.1			
% of Trips - Commercial (by land	use)				
Elementary school	-1 -0			20.0	10.0	70.0
City park				5.0	2.5	92.5
Regnl shop. center				2.0	1.0	97.0
General office building				35.0	17.5	47.5
Goverment office building				10.0	5.0	85.0

Page: 6 02/14/2007 10:11 AM

General light industry

50.0

25.0

25.0

Page: 7 02/14/2007 10:11 AM

MITIGATION OPTIONS SELECTED

Residential Mitigation Measures

Residential Mix of Uses Mitigation

Percent Reduction in Trips is 7.67% (calculated as a % of 9.57 trips/day)
Note that the above percent is applied to a baseline of 9.57 and that product is subtracted from the Unmitigated Trips
Inputs Selected:

The number of housing units within a 1/2 mile radius of the project, plus the number of residential units included in the project are 6578.

The employment for the study area (within a 1/2 mile radius of the project) is 7894.

Residential Local-Serving Retail Mitigation

Percent Reduction in Trips is 2% (calculated as a % of 9.57 trips/day)
Note that the above percent is applied to a baseline of 9.57 and that product is subtracted from the Unmitigated Trips
Inputs Selected:

The Presence of Local-Serving Retail checkbox was selected.

Non-Residential Mitigation Measures

Non-Residential Mix of Uses Mitigation

Percent Reduction in Trips is 7.67%

Inputs Selected:

The number of housing units within a 1/2 mile radius of the project, plus the number of residential units included in the project are 6578.

The employment for the study area (within a 1/2 mile radius of the project) is 7894.

Non-Residential Local-Serving Retail Mitigation

Percent Reduction in Trips is 2%

Inputs Selected:

The Presence of Local-Serving Retail checkbox was selected.

Page: 8 02/14/2007 10:11 AM

Changes made to the default values for Land Use Trip Percentages

Changes made to the default values for Area

The area souce mitigation measure option switch changed from off to on. The natural gas single family usage rate changed from 6665.0 to 4094.1. The natural gas multi-family usage rate changed from 4011.5 to 2288.9. The wood stove percentage changed from 67 to 0. The natural gas fireplace percentage changed from 33 to 100. The landscape year changed from 2006 to 2020. The consumer product ROG pounds per person changed from 0.0171 to 0.0151.

Changes made to the default values for Operations

The mitigation option switch changed from off to on.

The operational emission year changed from 2006 to 2025.

The home based work selection item changed from 8 to 7.

The home based shopping selection item changed from 8 to 7.

The home based shopping urban trip length changed from 7.3 to 2.

The home based other selection item changed from 8 to 7.

The commercial based commute selection item changed from 8 to 7.

The commercial based non-work selection item changed from 8 to 7.

The commercial based customer selection item changed from 8 to 7.

The Res and Non-Res Mix of Uses Mitigation changed from off to on.

The Res and Non-Res Local-Serving Retail Mitigation changed from off to on.

Page: 1 02/14/2007 10:12 AM

URBEMIS 2002 For Windows 8.7.0

 $\label{lem:hamiltonian} H:\ClientData\Castle and Cooke\Gateway Project Madera\GATEWAY AIR STUDY 8-17-06 (distrib Gateway Village Operations Non-Residential Template$ File Name:

Project Name: Project Location:

On-Road Motor Vehicle Emissions Based on EMFAC2002 version 2.2

SUMMARY REPORT (Tons/Year)

AREA SOURCE EMISSION ESTIMATES	3				
	ROG	NOx	CO	SO2	PM10
TOTALS (tpy, unmitigated)	67.07	12.24	22.99	0.11	0.08
TOTALS (tpy, mitigated)	67.07	12.24	22.99	0.11	0.08
OPERATIONAL (VEHICLE) EMISSION	ESTIM	ATES			
	ROG	NOx	CO	SO2	PM10
TOTALS (tpy, unmitigated)	81.56	85.14	846.35	1.32	104.09
TOTALS (tpy, mitigated)	74.29	76.40	759.40	1.18	93.40
SUM OF AREA AND OPERATIONAL EN	MISSION	ESTIMATES			
	ROG	NOx	CO	SO2	PM10
TOTALS (tpy, unmitigated)	148.63	97.38	869.34	1.42	104.17
TOTALS (tpy, mitigated)	141.36	88.65	782.40	1.29	93.47

Page: 2 02/14/2007 10:12 AM

URBEMIS 2002 For Windows 8.7.0

File Name: H:\ClientData\Castle and Cooke\Gateway Project Madera\GATEWAY AIR STUDY 8-17-06 (distrib Project Name: Gateway Village Operations Project Location: Non-Residential Template On-Road Motor Vehicle Emissions Based on EMFAC2002 version 2.2

DETAIL REPORT (Tons/Year)

AREA SOURCE EMISSION ESTIMATES	(Tons	per Year,	Unmitigated))	
Source	ROG	NOx	СО	SO2	PM10
Natural Gas	0.91	11.97	6.40	0.00	0.02
Hearth	0.00	0.00	0.00	0.00	0.00
Landscaping	2.08	0.27	16.59	0.11	0.05
Consumer Prdcts	51.86	-	-	-	-
Architectural Coatings	12.23	-	-	-	-
TOTALS (tpy, unmitigated)	67.07	12.24	22.99	0.11	0.08
AREA SOURCE EMISSION ESTIMATES	(Tons	per Year,	Mitigated)		
Source	ROG	NOx	CO	SO2	PM10
Natural Gas	0.91	11.97	6.40	0	0.02
Hearth	0.00	0.00	0.00	0.00	0.00
- 1		0 0 0			
Landscaping	2.08	0.27	16.59	0.11	0.05
Landscaping Consumer Prdcts	2.08 51.86	0.27	16.59	0.11	0.05
		0.27 - -	16.59 - -	0.11	0.05

Area Source Mitigation Measures

Page: 3 02/14/2007 10:12 AM

UNMITIGATED OPERATIONAL EMISSIONS

	ROG	NOx	CO	SO2	PM10
Single family housing	31.93	34.92	353.84	0.55	43.53
Apartments low rise	3.40	3.54	35.87	0.06	4.41
Retirement community	2.70	2.45	24.80	0.04	3.05
Elementary school	4.80	2.43	23.94	0.04	2.93
City park	0.25	0.15	1.44	0.00	0.18
Regnl shop. center	25.54	27.93	270.94	0.42	33.38
General office building	0.47	0.41	4.01	0.01	0.51
Goverment office building	8.06	8.58	84.42	0.13	10.11
General light industry	4.41	4.74	47.10	0.08	5.98
TOTAL EMISSIONS (tons/yr)	81.56	85.14	846.35	1.32	104.09

Includes correction for passby trips.

Does not include double counting adjustment for internal trips.

OPERATIONAL (Vehicle) EMISSION ESTIMATES

Season: Annual Analysis Year: 2020

EMFAC Version: EMFAC2002 (9/2002)

Summary of Land Uses:

Unit Type	Acreage	Trip	Rate		No. Units	Total Trips
Single family housing Apartments low rise Retirement community Elementary school City park Regnl shop. center General office building Government office building General light industry	1,659.33 43.75 180.00	6.90 3.71 1.29 1.59 42.94 3.32 68.93	trips/dwell trips/dwell trips/stude trips/acres trips/1000 trips/1000 trips/1000	ling unit ling unit ents s sq. ft. sq. ft. sq. ft.	4,978.0047 700.00 4 900.00 3 3,200.00 4 148.00 1,199.1051 171.30 239.5816 872.28 6	,830.00 ,339.00 ,128.00 235.32 ,489.27 568.72 ,514.25

Sum of Total Trips 134,823.81 Total Vehicle Miles Traveled 757,655.22

Vehicle Assumptions:

Fleet Mix:

***	D	N Cabalant	G-+-1	Diamal
Vehicle Type	Percent Type	Non-Catalyst	Catalyst	Diesel
Light Auto	54.40	0.40	99.40	0.20
Light Truck < 3,750 lb	s 15.30	0.70	98.00	1.30
Light Truck 3,751- 5,75	0 16.40	0.60	98.80	0.60
Med Truck 5,751-8,50	0 7.30	0.00	98.60	1.40
Lite-Heavy 8,501-10,00	0 1.10	0.00	81.80	18.20
Lite-Heavy 10,001-14,00	0.30	0.00	66.70	33.30
Med-Heavy 14,001-33,00	0 1.00	0.00	20.00	80.00
Heavy-Heavy 33,001-60,00	0.80	0.00	0.00	100.00
Line Haul > 60,000 lb	s 0.00	0.00	0.00	100.00
Urban Bus	0.20	0.00	50.00	50.00
Motorcycle	1.60	50.00	50.00	0.00
School Bus	0.10	0.00	0.00	100.00
Motor Home	1.50	0.00	93.30	6.70

Travel Conditions						
		Residential	-		Commercia:	1
	Home-	Home-	Home-			
	Work	Shop	Other	Commute	Non-Work	Customer
Urban Trip Length (miles)	10.8	2.0	7.5	9.5	7.4	7.4
Rural Trip Length (miles)	16.8	7.1	7.9	14.7	6.6	6.6
Trip Speeds (mph)	35.0	35.0	35.0	35.0	35.0	35.0
% of Trips - Residential	32.9	18.0	49.1			
% of Trips - Commercial (by land	use)				
Elementary school	-			20.0	10.0	70.0
City park				5.0	2.5	92.5
Regnl shop. center				2.0	1.0	97.0
General office building				35.0	17.5	47.5
Government office building				10.0	5.0	85.0
General light industry				50.0	25.0	25.0

Page: 4 02/14/2007 10:12 AM

Page: 5 02/14/2007 10:12 AM

MITIGATED OPERATIONAL EMISSIONS

	ROG	NOx	CO	SO2	PM10
Single family housing	29.25	31.55	319.63	0.50	39.33
Apartments low rise	3.03	3.07	31.06	0.05	3.82
Retirement community	2.22	1.84	18.62	0.03	2.29
Elementary school	4.60	2.19	21.62	0.03	2.65
City park	0.23	0.13	1.30	0.00	0.17
Regnl shop. center	23.16	25.23	244.75	0.38	30.15
General office building	0.44	0.37	3.62	0.01	0.46
Goverment office building	7.30	7.75	76.26	0.12	9.13
General light industry	4.06	4.28	42.54	0.07	5.40
TOTAL EMISSIONS (tons/yr)	74.29	76.40	759.40	1.18	93.40
PERCENTAGE REDUCTION %	9	10	10	10	10

Includes correction for passby trips. Does not include double counting adjustment for internal trips.

OPERATIONAL (Vehicle) EMISSION ESTIMATES

Analysis Year: 2020 Season: Annual

EMFAC Version: EMFAC2002 (9/2002)

Summary of Land Uses:

Unit Type	Acreage	Trip	Rate		No. Units	Total Trips
Single family housing Apartments low rise Retirement community Elementary school City park Regnl shop. center General office building Government office building General light industry	1,659.33 43.75 180.00	6.90 3.71 1.29 1.59 42.94 3.32 68.93	trips/dwelling trips/dwelling trips/students trips/acres trips/1000 sq. trips/1000 sq. trips/1000 sq. trips/1000 sq.	unit unit ft. ft. ft.	4,978.0047 700.00 4 900.00 3 3,200.00 4 148.00 1,199.1051 171.30 239.5816 872.28 6	,830.00 ,339.00 ,128.00 235.32 ,489.27 568.72 ,514.25

Sum of Total Trips 134,823.81 Total Vehicle Miles Traveled 757,655.22

Vehicle Assumptions:

Fleet Mix:

Vehicle Type	Percent Type	Non-Catalyst	Catalyst	Diesel
Light Auto	54.40	0.40	99.40	0.20
Light Truck < 3,750 lb	s 15.30	0.70	98.00	1.30
Light Truck 3,751- 5,75	0 16.40	0.60	98.80	0.60
Med Truck 5,751-8,50	0 7.30	0.00	98.60	1.40
Lite-Heavy 8,501-10,00	0 1.10	0.00	81.80	18.20
Lite-Heavy 10,001-14,00	0 0.30	0.00	66.70	33.30
Med-Heavy 14,001-33,00	0 1.00	0.00	20.00	80.00
Heavy-Heavy 33,001-60,00	0 0.80	0.00	0.00	100.00
Line Haul > 60,000 lb	s 0.00	0.00	0.00	100.00
Urban Bus	0.20	0.00	50.00	50.00
Motorcycle	1.60	50.00	50.00	0.00
School Bus	0.10	0.00	0.00	100.00
Motor Home	1.50	0.00	93.30	6.70

Travel Conditions

Travel Conditions						
		Residential	L		Commercial	l
	Home-	Home-	Home-			
	Work	Shop	Other	Commute	Non-Work	Customer
Urban Trip Length (miles)	10.8	2.0	7.5	9.5	7.4	7.4
Rural Trip Length (miles)	16.8	7.1	7.9	14.7	6.6	6.6
Trip Speeds (mph)	35.0	35.0	35.0	35.0	35.0	35.0
% of Trips - Residential	32.9	18.0	49.1			
% of Trips - Commercial (bv land	use)				
Elementary school		<i>,</i>		20.0	10.0	70.0
City park				5.0	2.5	92.5
Regnl shop. center				2.0	1.0	97.0
General office building				35.0	17.5	47.5
Goverment office building				10.0	5.0	85.0

Page: 6 02/14/2007 10:12 AM

General light industry

50.0 25.0 25.0

Page: 7 02/14/2007 10:12 AM

MITIGATION OPTIONS SELECTED

Residential Mitigation Measures

Residential Mix of Uses Mitigation

Percent Reduction in Trips is 7.67% (calculated as a % of 9.57 trips/day)
Note that the above percent is applied to a baseline of 9.57 and that product is subtracted from the Unmitigated Trips

Inputs Selected:

The number of housing units within a 1/2 mile radius of the project, plus the number of residential units included in the project are 6578.

The employment for the study area (within a 1/2 mile radius of the project) is 7894.

Residential Local-Serving Retail Mitigation

Percent Reduction in Trips is 2% (calculated as a % of 9.57 trips/day)
Note that the above percent is applied to a baseline of 9.57 and that product is subtracted from the Unmitigated Trips
Inputs Selected:

The Presence of Local-Serving Retail checkbox was selected.

Non-Residential Mitigation Measures

Non-Residential Mix of Uses Mitigation

Percent Reduction in Trips is 7.67%

Inputs Selected:

The number of housing units within a 1/2 mile radius of the project, plus the number of residential units included in the project are 6578.

The employment for the study area (within a 1/2 mile radius of the project) is 7894.

Non-Residential Local-Serving Retail Mitigation

Percent Reduction in Trips is 2%

Inputs Selected:

The Presence of Local-Serving Retail checkbox was selected.

Page: 8 02/14/2007 10:12 AM

Changes made to the default values for Land Use Trip Percentages

Changes made to the default values for Area

The area souce mitigation measure option switch changed from off to on. The natural gas single family usage rate changed from 6665.0 to 4094.1. The natural gas multi-family usage rate changed from 4011.5 to 2288.9. The wood stove percentage changed from 67 to 0. The natural gas fireplace percentage changed from 33 to 100. The landscape year changed from 2006 to 2020. The consumer product ROG pounds per person changed from 0.0171 to 0.0151.

Changes made to the default values for Operations

The mitigation option switch changed from off to on.

The operational emission year changed from 2006 to 2020.

The home based work selection item changed from 8 to 7.

The home based shopping selection item changed from 8 to 7.

The home based shopping urban trip length changed from 7.3 to 2.

The home based other selection item changed from 8 to 7.

The commercial based commute selection item changed from 8 to 7.

The commercial based non-work selection item changed from 8 to 7.

The commercial based customer selection item changed from 8 to 7.

The Res and Non-Res Mix of Uses Mitigation changed from off to on.

The Res and Non-Res Local-Serving Retail Mitigation changed from off to on.

Page: 1 02/14/2007 10:13 AM

URBEMIS 2002 For Windows 8.7.0

H:\ClientData\Castle and Cooke\Gateway Project Madera\GATEWAY AIR STUDY 8-17-06 (distrib Gateway Village Operations Non-Residential Template File Name:

Project Name: Project Location:

On-Road Motor Vehicle Emissions Based on EMFAC2002 version 2.2

SUMMARY REPORT (Tons/Year)

AREA SOURCE EMISSION ESTIMATE	S				
	ROG	NOx	CO	SO2	PM10
TOTALS (tpy, unmitigated)	67.07	12.24	22.99	0.11	0.08
TOTALS (tpy, mitigated)	67.07	12.24	22.99	0.11	0.08
OPERATIONAL (VEHICLE) EMISSIO	N ESTIMA	ATES			
	ROG	NOx	CO	SO2	PM10
TOTALS (tpy, unmitigated)	58.22	57.75	577.06	1.32	103.91
TOTALS (tpy, mitigated)	53.06	51.83	517.78	1.18	93.23
SUM OF AREA AND OPERATIONAL E					
	ROG	NOx	CO	S02	PM10
TOTALS (tpy, unmitigated)	125.29	69.99	600.06	1.43	103.99
TOTALS (tpy, mitigated)	120.13	64.07	540.78	1.29	93.31

Page: 2 02/14/2007 10:13 AM

URBEMIS 2002 For Windows 8.7.0

File Name: H:\ClientData\Castle and Cooke\Gateway Project Madera\GATEWAY AIR STUDY 8-17-06 (distrib

Project Name: Gateway Village Operations
Project Location: Non-Residential Template
On-Road Motor Vehicle Emissions Based on EMFAC2002 version 2.2

DETAIL REPORT (Tons/Year)

AREA SOURCE EMISSION ESTIMATES Source Natural Gas Hearth Landscaping Consumer Prdcts	ROG 0.91 0.00 2.08 51.86	Year, NOx 11.97 0.00 0.27	Unmitigated) CO 6.40 0.00 16.59	SO2 0.00 0.00 0.11	PM10 0.02 0.00 0.05
Architectural Coatings	12.23	-	-	-	-
TOTALS (tpy, unmitigated)	67.07	12.24	22.99	0.11	0.08
AREA SOURCE EMISSION ESTIMATES	(Tons per	Year,	Mitigated)		
Source	ROG	NOx	CO	SO2	PM10
Natural Gas	0.91	11.97	6.40	0	0.02
Hearth	0.00	0.00	0.00	0.00	0.00
Landscaping	2.08	0.27	16.59	0.11	0.05
Consumer Prdcts	51.86	-	-	-	-
Architectural Coatings	12.23	-	-	-	-
TOTALS (tpy, mitigated)	67.07	12.24	22.99	0.11	0.08

Area Source Mitigation Measures

Page: 3 02/14/2007 10:13 AM

UNMITIGATED OPERATIONAL EMISSIONS

	ROG	NOx	CO	SO2	PM10
Single family housing	22.74	23.67	241.30	0.55	43.46
Apartments low rise	2.43	2.40	24.46	0.06	4.41
Retirement community	1.94	1.66	16.91	0.04	3.05
Elementary school	3.50	1.65	16.32	0.04	2.92
City park	0.18	0.10	0.98	0.00	0.18
Regnl shop. center	18.20	18.96	184.67	0.42	33.32
General office building	0.34	0.27	2.73	0.01	0.51
Government office building	5.75	5.83	57.61	0.13	10.09
General light industry	3.15	3.21	32.08	0.08	5.97
TOTAL EMISSIONS (tons/yr)	58.22	57.75	577.06	1.32	103.91

Includes correction for passby trips.

Does not include double counting adjustment for internal trips.

OPERATIONAL (Vehicle) EMISSION ESTIMATES

Season: Annual Analysis Year: 2025

EMFAC Version: EMFAC2002 (9/2002)

Summary of Land Uses:

Unit Type	Acreage	Trip	Rate		No. Units	Total
Single family housing Apartments low rise Retirement community Elementary school City park Regnl shop. center General office building Government office building	1,659.33 43.75 180.00	6.90 3.71 1.29 1.59 42.94 3.32 68.93	trips/dwellin trips/dwellin trips/student trips/student trips/acres trips/1000 so trips/1000 so trips/1000 so	ng unit ng unit ts q. ft. q. ft. q. ft.	1,199.1051 171.30 239.5816	,830.00 ,339.00 ,128.00 235.32 ,489.27 568.72 ,514.25
General light industry		6.97	trips/1000 so	q. It.	872.28 6	,079.79

Sum of Total Trips 134,823.81 Total Vehicle Miles Traveled 757,655.22

Vehicle Assumptions:

Fleet Mix:

Vehicle Type	Percent Type	Non-Catalyst	Catalyst	Diesel
Light Auto	53.50	0.00	100.00	0.00
Light Truck < 3,750 lbs	s 15.70	0.00	99.40	0.60
Light Truck 3,751- 5,75	0 16.50	0.00	100.00	0.00
Med Truck 5,751-8,50	0 7.50	0.00	98.70	1.30
Lite-Heavy 8,501-10,00	0 1.00	0.00	80.00	20.00
Lite-Heavy 10,001-14,00	0.30	0.00	66.70	33.30
Med-Heavy 14,001-33,00	0.90	0.00	22.20	77.80
Heavy-Heavy 33,001-60,00	0.80	0.00	0.00	100.00
Line Haul > 60,000 lbs	s 0.00	0.00	0.00	100.00
Urban Bus	0.20	0.00	50.00	50.00
Motorcycle	1.50	40.00	60.00	0.00
School Bus	0.10	0.00	0.00	100.00
Motor Home	2.00	0.00	90.00	10.00

Travel Conditions

Traver conditions						
		Residential			Commercial	L
	Home-	Home-	Home-			
	Work	Shop	Other	Commute	Non-Work	Customer
Urban Trip Length (miles)	10.8	2.0	7.5	9.5	7.4	7.4
Rural Trip Length (miles)	16.8	7.1	7.9	14.7	6.6	6.6
Trip Speeds (mph)	35.0	35.0	35.0	35.0	35.0	35.0
% of Trips - Residential	32.9	18.0	49.1			
% of Trips - Commercial ()	by land	use)				
Elementary school	-			20.0	10.0	70.0
City park				5.0	2.5	92.5
Regnl shop. center				2.0	1.0	97.0
General office building				35.0	17.5	47.5
Government office building				10.0	5.0	85.0
General light industry				50.0	25.0	25.0

Page: 4 02/14/2007 10:13 AM

Page: 5 02/14/2007 10:13 AM

MITIGATED OPERATIONAL EMISSIONS

	ROG	NOx	CO	SO2	PM10
Single family housing	20.85	21.38	217.98	0.50	39.26
Apartments low rise	2.16	2.08	21.18	0.05	3.82
Retirement community	1.60	1.25	12.70	0.03	2.29
Elementary school	3.35	1.49	14.75	0.03	2.64
City park	0.17	0.09	0.88	0.00	0.17
Regnl shop. center	16.51	17.13	166.82	0.38	30.10
General office building	0.31	0.25	2.46	0.01	0.46
Goverment office building	5.21	5.26	52.04	0.12	9.12
General light industry	2.90	2.90	28.98	0.07	5.39
TOTAL EMISSIONS (tons/yr)	53.06	51.83	517.78	1.18	93.23
PERCENTAGE REDUCTION %	9	10	10	10	10

Includes correction for passby trips. Does not include double counting adjustment for internal trips.

OPERATIONAL (Vehicle) EMISSION ESTIMATES

Analysis Year: 2025 Season: Annual

EMFAC Version: EMFAC2002 (9/2002)

Summary of Land Uses:

Unit Type	Acreage	Trip	Rate	No. Tota Units Trip	
Single family housing Apartments low rise Retirement community Elementary school City park Regnl shop. center General office building Government office building General light industry	1,659.33 43.75 180.00	6.90 3.71 1.29 1.59 42.94 3.32 68.93	trips/dwelling unit trips/dwelling unit trips/students trips/acres trips/1000 sq. ft. trips/1000 sq. ft. trips/1000 sq. ft. trips/1000 sq. ft.	700.00 4,830.0	00 00 32 27 72

Sum of Total Trips 134,823.81 Total Vehicle Miles Traveled 757,655.22

Vehicle Assumptions:

Fleet Mix:

Vehicle Type	Percent Type	Non-Catalyst	Catalyst	Diesel
Light Auto	53.50	0.00	100.00	0.00
Light Truck < 3,750 lb	s 15.70	0.00	99.40	0.60
Light Truck 3,751- 5,75	0 16.50	0.00	100.00	0.00
Med Truck 5,751-8,50	0 7.50	0.00	98.70	1.30
Lite-Heavy 8,501-10,00	0 1.00	0.00	80.00	20.00
Lite-Heavy 10,001-14,00	0.30	0.00	66.70	33.30
Med-Heavy 14,001-33,00	0.90	0.00	22.20	77.80
Heavy-Heavy 33,001-60,00	0.80	0.00	0.00	100.00
Line Haul > 60,000 lb	s 0.00	0.00	0.00	100.00
Urban Bus	0.20	0.00	50.00	50.00
Motorcycle	1.50	40.00	60.00	0.00
School Bus	0.10	0.00	0.00	100.00
Motor Home	2.00	0.00	90.00	10.00

Travel Conditions

Traver conditions						
	Residential			Commercial		
	Home-	Home-	Home-			
	Work	Shop	Other	Commute	Non-Work	Customer
Urban Trip Length (miles)	10.8	2.0	7.5	9.5	7.4	7.4
Rural Trip Length (miles)	16.8	7.1	7.9	14.7	6.6	6.6
Trip Speeds (mph)	35.0	35.0	35.0	35.0	35.0	35.0
% of Trips - Residential	32.9	18.0	49.1			
% of Trips - Commercial (by land	use)				
Elementary school	-			20.0	10.0	70.0
City park				5.0	2.5	92.5
Regnl shop. center				2.0	1.0	97.0
General office building				35.0	17.5	47.5
Government office building				10.0	5.0	85.0
_						

Page: 6 02/14/2007 10:13 AM

General light industry

50.0

25.0

25.0

Page: 7 02/14/2007 10:13 AM

MITIGATION OPTIONS SELECTED

Residential Mitigation Measures

Residential Mix of Uses Mitigation

Percent Reduction in Trips is 7.67% (calculated as a % of 9.57 trips/day) Note that the above percent is applied to a baseline of 9.57 and that product is subtracted from the Unmitigated Trips

Inputs Selected:

The number of housing units within a 1/2 mile radius of the project, plus the number of residential units included in the project are 6578. The employment for the study area (within a 1/2 mile radius of the project) is 7894.

Residential Local-Serving Retail Mitigation

Percent Reduction in Trips is 2% (calculated as a % of 9.57 trips/day) Note that the above percent is applied to a baseline of 9.57 and that product is subtracted from the Unmitigated Trips Inputs Selected:

The Presence of Local-Serving Retail checkbox was selected.

Non-Residential Mitigation Measures -----

Non-Residential Mix of Uses Mitigation

Percent Reduction in Trips is 7.67%

Inputs Selected:

The number of housing units within a 1/2 mile radius of the project, plus the number of residential units included in the project are 6578. The employment for the study area (within a 1/2 mile radius of the project) is 7894.

Non-Residential Local-Serving Retail Mitigation

Percent Reduction in Trips is 2%

Inputs Selected:

The Presence of Local-Serving Retail checkbox was selected.

Page: 8 02/14/2007 10:13 AM

Changes made to the default values for Land Use Trip Percentages

Changes made to the default values for Area

The area souce mitigation measure option switch changed from off to on. The natural gas single family usage rate changed from 6665.0 to 4094.1. The natural gas multi-family usage rate changed from 4011.5 to 2288.9. The wood stove percentage changed from 67 to 0. The natural gas fireplace percentage changed from 33 to 100. The landscape year changed from 2006 to 2020. The consumer product ROG pounds per person changed from 0.0171 to 0.0151.

Changes made to the default values for Operations

The mitigation option switch changed from off to on.

The operational emission year changed from 2006 to 2025.
The home based work selection item changed from 8 to 7.
The home based shopping selection item changed from 8 to 7.
The home based shopping urban trip length changed from 7.3 to 2.
The home based other selection item changed from 8 to 7.
The commercial based commute selection item changed from 8 to 7.
The commercial based non-work selection item changed from 8 to 7.
The commercial based customer selection item changed from 8 to 7.
The Res and Non-Res Mix of Uses Mitigation changed from off to on.
The Res and Non-Res Local-Serving Retail Mitigation changed from off to on.

Page: 1

02/14/2007 8:11 AM

URBEMIS 2002 For Windows 8.7.0

H:\ClientData\Castle and Cooke\Gateway Project Madera\GATEWAY AIR STUDY 8-17-06 (distrib File Name:

Gateway Village Operations Non-Residential Template Project Name: Project Location: Non-Residential Template
On-Road Motor Vehicle Emissions Based on EMFAC2002 version 2.2

SUMMARY REPORT (Tons/Year)

AREA SOURCE EMISSION ESTIMATES	-	NO	GO.	502	DM1.0
momaic (base asserbed)	ROG	NOx	CO	SO2	PM10
TOTALS (tpy, unmitigated)	67.18	12.24	22.99	0.11	0.08
TOTALS (tpy, mitigated)	67.18	12.24	22.99	0.11	0.08
OPERATIONAL (VEHICLE) EMISSION	N ESTIMA	TES			
	ROG	NOx	CO	SO2	PM10
TOTALS (tpy, unmitigated)	58.57	58.11	580.63	1.33	104.57
TOTALS (tpy, mitigated)	53.38	52.15	521.00	1.19	93.83
TOTALS (tpy, mittigated)	33.30	32.13	321.00	1.19	33.03
SUM OF AREA AND OPERATIONAL E		ESTIMATES			
	ROG	NOx	CO	SO2	PM10
TOTALS (tpy, unmitigated)	125.75	70.35	603.62	1.43	104.65
TOTALS (tpy, mitigated)	120.56	64.39	544.00	1.30	93.91
rolling (op), micragacca,		01.00	211.00	2.50	,,,,

Page: 2 02/14/2007 8:11 AM

URBEMIS 2002 For Windows 8.7.0

File Name: H:\ClientData\Castle and Cooke\Gateway Project Madera\GATEWAY AIR STUDY 8-17-06 (distrib

Gateway Village Operations Non-Residential Template Project Name: Project Location: Non-Residential Template
On-Road Motor Vehicle Emissions Based on EMFAC2002 version 2.2

DETAIL REPORT (Tons/Year)

AREA SOURCE EMISSION ESTIMATES	(Tons	per Year,	Unmitigated)	1	
Source	ROG	NOx	CO	SO2	PM10
Natural Gas	0.91	11.97	6.40	0.00	0.02
Hearth	0.00	0.00	0.00	0.00	0.00
Landscaping	2.08	0.27	16.59	0.11	0.05
Consumer Prdcts	51.86	-	-	-	-
Architectural Coatings	12.34	-	-	-	-
TOTALS (tpy, unmitigated)	67.18	12.24	22.99	0.11	0.08
AREA SOURCE EMISSION ESTIMATES	(Tons	per Year.	Mitigated)		
	,	L ,			
Source	ROG	NOx	CO	SO2	PM10
Source Natural Gas		~	CO 6.40	SO2 0	PM10 0.02
	ROG	NOx			
Natural Gas	ROG 0.91	NOx 11.97	6.40	0	0.02
Natural Gas Hearth	ROG 0.91 0.00	NOx 11.97 0.00	6.40	0.00	0.02
Natural Gas Hearth Landscaping	ROG 0.91 0.00 2.08	NOx 11.97 0.00	6.40	0.00	0.02

Area Source Mitigation Measures

UNMITIGATED OPERATIONAL EMISSIONS

	ROG	NOx	CO	SO2	PM10
Single family housing	22.74	23.67	241.30	0.55	43.46
Apartments low rise	2.43	2.40	24.46	0.06	4.41
Retirement community	1.94	1.66	16.91	0.04	3.05
Elementary school	3.50	1.65	16.32	0.04	2.92
City park	0.18	0.10	0.98	0.00	0.18
Regnl shop. center	18.20	18.96	184.67	0.42	33.32
General office building	0.34	0.27	2.73	0.01	0.51
Goverment office building	5.75	5.83	57.61	0.13	10.09
General light industry	3.50	3.56	35.64	0.08	6.63
TOTAL EMISSIONS (tons/yr)	58.57	58.11	580.63	1.33	104.57

Includes correction for passby trips. Does not include double counting adjustment for internal trips.

OPERATIONAL (Vehicle) EMISSION ESTIMATES

Analysis Year: 2025 Season: Annual

EMFAC Version: EMFAC2002 (9/2002)

Summary of Land Uses:

Unit Type	Acreage	Trip	Rate	No. Units	Total Trips
Single family housing Apartments low rise Retirement community Elementary school	1,659.33 43.75 180.00	6.90 3.71	trips/dwelling unit trips/dwelling unit trips/dwelling unit trips/students	4,978.0047 700.00 4 900.00 3 3,200.00 4	,830.00 ,339.00
City park		1.59	trips/acres	148.00	235.32
Regnl shop. center		42.94	trips/1000 sq. ft.	1,199.1051	,489.27
General office building		3.32	trips/1000 sq. ft.	171.30	568.72
Goverment office building	3	68.93	trips/1000 sq. ft.	239.5816	,514.25
General light industry		6.97	trips/1000 sq. ft.	969.20 6	,755.32

Sum of Total Trips 135,499.34
Total Vehicle Miles Traveled 762,492.88

Vehicle Assumptions:

Fleet Mix:

Vehicle Type	Percent Type	Non-Catalyst	Catalyst	Diesel
Light Auto	53.50	0.00	100.00	0.00
Light Truck < 3,750 lbs	s 15.70	0.00	99.40	0.60
Light Truck 3,751- 5,750	0 16.50	0.00	100.00	0.00
Med Truck 5,751-8,500	7.50	0.00	98.70	1.30
Lite-Heavy 8,501-10,000	1.00	0.00	80.00	20.00
Lite-Heavy 10,001-14,000	0.30	0.00	66.70	33.30
Med-Heavy 14,001-33,000	0.90	0.00	22.20	77.80
Heavy-Heavy 33,001-60,000	0.80	0.00	0.00	100.00
Line Haul > 60,000 lbs	s 0.00	0.00	0.00	100.00
Urban Bus	0.20	0.00	50.00	50.00
Motorcycle	1.50	40.00	60.00	0.00
School Bus	0.10	0.00	0.00	100.00
Motor Home	2.00	0.00	90.00	10.00

Travel Conditions

	Residential			Commercial		
•	Home-	Home-	Home-			
	Work	Shop	Other	Commute	Non-Work	Customer
Urban Trip Length (miles)	10.8	2.0	7.5	9.5	7.4	7.4
Rural Trip Length (miles)	16.8	7.1	7.9	14.7	6.6	6.6
Trip Speeds (mph)	35.0	35.0	35.0	35.0	35.0	35.0
% of Trips - Residential	32.9	18.0	49.1			
% of Trips - Commercial (bv land	use)				
Elementary school	1			20.0	10.0	70.0
City park				5.0	2.5	92.5
Regnl shop. center				2.0	1.0	97.0
General office building				35.0	17.5	47.5
Goverment office building				10.0	5.0	85.0
General light industry				50.0	25.0	25.0

Page: 4 02/14/2007 8:11 AM

MITIGATED OPERATIONAL EMISSIONS

	ROG	NOx	CO	SO2	PM10
Single family housing	20.85	21.38	217.98	0.50	39.26
Apartments low rise	2.16	2.08	21.18	0.05	3.82
Retirement community	1.60	1.25	12.70	0.03	2.29
Elementary school	3.35	1.49	14.75	0.03	2.64
City park	0.17	0.09	0.88	0.00	0.17
Regnl shop. center	16.51	17.13	166.82	0.38	30.10
General office building	0.31	0.25	2.46	0.01	0.46
Goverment office building	5.21	5.26	52.04	0.12	9.12
General light industry	3.22	3.22	32.19	0.08	5.99
TOTAL EMISSIONS (tons/yr) PERCENTAGE REDUCTION %	53.38 9	52.15 10	521.00 10	1.19 10	93.83 10

Includes correction for passby trips. Does not include double counting adjustment for internal trips.

OPERATIONAL (Vehicle) EMISSION ESTIMATES

Analysis Year: 2025 Season: Annual

EMFAC Version: EMFAC2002 (9/2002)

Summary of Land Uses:

Unit Type	Acreage	Trip	Rate	No. Total Units Trips
Single family housing Apartments low rise Retirement community Elementary school City park Regnl shop. center General office building Government office building General light industry	1,659.33 43.75 180.00	6.90 3.71 1.29 1.59 42.94 3.32 68.93	trips/dwelling un trips/dwelling un trips/students trips/acres trips/1000 sq. ft trips/1000 sq. ft trips/1000 sq. ft trips/1000 sq. ft	it 700.00 4,830.00 it 900.00 3,339.00 3,200.00 4,128.00 148.00 235.32 . 1,199.1051,489.27 . 171.30 568.72 . 239.5816,514.25

Sum of Total Trips 135,499.34
Total Vehicle Miles Traveled 762,492.88

Vehicle Assumptions:

Fleet Mix:

Vehicle Type	Percent Type	Non-Catalyst	Catalyst	Diesel
Light Auto	53.50	0.00	100.00	0.00
Light Truck < 3,750 lbs	15.70	0.00	99.40	0.60
Light Truck 3,751- 5,750	16.50	0.00	100.00	0.00
Med Truck 5,751-8,500	7.50	0.00	98.70	1.30
Lite-Heavy 8,501-10,000	1.00	0.00	80.00	20.00
Lite-Heavy 10,001-14,000	0.30	0.00	66.70	33.30
Med-Heavy 14,001-33,000	0.90	0.00	22.20	77.80
Heavy-Heavy 33,001-60,000	0.80	0.00	0.00	100.00
Line Haul > 60,000 lbs	0.00	0.00	0.00	100.00
Urban Bus	0.20	0.00	50.00	50.00
Motorcycle	1.50	40.00	60.00	0.00
School Bus	0.10	0.00	0.00	100.00
Motor Home	2.00	0.00	90.00	10.00

Travel Conditions

Traver conditions						
		Residential			Commercial	L
	Home-	Home-	Home-			
	Work	Shop	Other	Commute	Non-Work	Customer
Urban Trip Length (miles)	10.8	2.0	7.5	9.5	7.4	7.4
Rural Trip Length (miles)	16.8	7.1	7.9	14.7	6.6	6.6
Trip Speeds (mph)	35.0	35.0	35.0	35.0	35.0	35.0
% of Trips - Residential	32.9	18.0	49.1			
% of Trips - Commercial (bv land	use)				
Elementary school		,		20.0	10.0	70.0
City park				5.0	2.5	92.5
Regnl shop. center				2.0	1.0	97.0
General office building				35.0	17.5	47.5
Goverment office building				10.0	5.0	85.0

Page: 6 02/14/2007 8:11 AM

General light industry

50.0

25.0

25.0

Page: 7 02/14/2007 8:11 AM

MITIGATION OPTIONS SELECTED

Residential Mitigation Measures

Residential Mix of Uses Mitigation

Percent Reduction in Trips is 7.67% (calculated as a % of 9.57 trips/day)
Note that the above percent is applied to a baseline of 9.57 and that product is subtracted from the Unmitigated Trips
Inputs Selected:

The number of housing units within a 1/2 mile radius of the project, plus the number of residential units included in the project are 6578.

The employment for the study area (within a 1/2 mile radius of the project) is 7894.

Residential Local-Serving Retail Mitigation

Percent Reduction in Trips is 2% (calculated as a % of 9.57 trips/day)
Note that the above percent is applied to a baseline of 9.57 and that product is subtracted from the Unmitigated Trips
Inputs Selected:

The Presence of Local-Serving Retail checkbox was selected.

Non-Residential Mitigation Measures

Non-Residential Mix of Uses Mitigation

Percent Reduction in Trips is 7.67%

Inputs Selected:

The number of housing units within a 1/2 mile radius of the project, plus the number of residential units included in the project are 6578.

The employment for the study area (within a 1/2 mile radius of the project) is 7894.

Non-Residential Local-Serving Retail Mitigation

Percent Reduction in Trips is 2%

Inputs Selected:

The Presence of Local-Serving Retail checkbox was selected.

Page: 8 02/14/2007 8:11 AM

Changes made to the default values for Land Use Trip Percentages

Changes made to the default values for Area '

The area souce mitigation measure option switch changed from off to on. The natural gas single family usage rate changed from 6665.0 to 4094.1. The natural gas multi-family usage rate changed from 4011.5 to 2288.9. The wood stove percentage changed from 67 to 0. The natural gas fireplace percentage changed from 33 to 100. The landscape year changed from 2006 to 2020. The consumer product ROG pounds per person changed from 0.0171 to 0.0151.

Changes made to the default values for Operations

The mitigation option switch changed from off to on.

The operational emission year changed from 2006 to 2025.

The home based work selection item changed from 8 to 7.

The home based shopping selection item changed from 8 to 7.

The home based shopping urban trip length changed from 7.3 to 2.0.

The home based other selection item changed from 8 to 7.

The commercial based commute selection item changed from 8 to 7.

The commercial based non-work selection item changed from 8 to 7.

The commercial based customer selection item changed from 8 to 7.

The Res and Non-Res Mix of Uses Mitigation changed from off to on.

The Res and Non-Res Local-Serving Retail Mitigation changed from off to on.

ATTACHMENT 2

2004 Vehicle Emission Estimates

Operating Schedule (davs/vr)	365	365	365	365	365	25	52	52	
Operating Schedule (hrs/dav)	0.083	0.083	0.083	0.083	0.083	0.5	0.5	0.5	Horsepower (hp) 400 400 400 400 400 400 400
Load	0.9	6.0	6.0	6.0	6.0	6.0	6.0	6.0	Travel Time Roundtrip (hr) 0.0237 0.0555 0.0080 0.0139 0.0053
Horsepower (hp)	400	400	400	400	400	20	20	20	Speed (mph) 15 15 15 15 15
Quantity	· -	-	-	-	-	-	-	-	Distance (mile) 0.178 0.416 0.06 0.104 0.04
Vehicle Type	Tractor Trailer1	Tractor Trailer2	Tractor Trailer3	Tractor Trailer4	Tractor Trailer5	TRU1	TRU2	TRU3	Truck Traffic TT1 TT2 TT3 TT4 TT5

Diesel Engine Emission Toxics

	Internal	Internal	Tractor			Ē	ruck	ruck	Truck	Truck	Truck	Truck	Truck	Truck	Fruck	Truck	ruck	ruck
	Combustion	Combustion	Trailer	Tractor Trailer TRU		TRU	Traffic4 T	raffic1	Traffic2	Traffic2	Traffic3	Traffic3	Traffic4	Traffic4 T	raffic5	Traffic5	Fraffice T	raffice
	Emission Factor	Emission Factor Emission Factor*	Emissions	Emissions	Emissions	Emissions E	Emission E	Emissions	Emissions Emission		Emission	Emissions	Emissions Emissions Emission		Emission	Emissions Emissions Emissions	missions	missions
Pollutant	(lb/1000 gal)	(lb/hp-hr)	(lb/hr)	(lbs/yr)	(lbs/hr)	(lbs/yr) s		(lbs/yr)	(lbs/hr)	s (lbs/yr)		(lbs/yr)	(lbs/hr)	s (lbs/yr) s (lbs/hr)		(lbs/yr)	lbs/hr) (I	(lbs/yr)
PAHs (Including Naphthalene		2.86E-06	8.58E-05	3.13E-02	6.43E-05	3.35E-03	2.71E-05	9.91E-03	6.34E-05	2.32E-02	9.15E-06	3.34E-03	1.595-05	5.79E-03	6.10E-06	2.23E-03	2.71E-05	9.91E-03
xylenes	0.0424	2.17E-06	6.51E-05	2.38E-02	4.88E-05	2.54E-03	2.06E-05	7.52E-03	4.81E-05	1.76E-02	6.94E-06	2.53E-03	1.20E-05	4.39E-03	4.63E-06	1.69E-03	2.06E-05	7.52E-03
Formaldehyde	1.7261	8.83E-05	2.65E-03	9.67E-01	1.99E-03	1.03E-01	8.38E-04	3.06E-01	1.96E-03	7.15E-01	2.83E-04	1.03E-01	4.90E-04	1.79E-01	1.88E-04	6.88E-02	8.38E-04	3.06 E -01
Benzene	0.1863	9.53E-06	2.86E-04	1.04E-01	2.14E-04	1.12E-02	9.05E-05	3.30E-02	2.11E-04	7.72E-02	3.05E-05	1.11E-02	5.29E-05	1.93E-02	2.03E-05	7.42E-03	9.05E-05	3.30E-02
Acetaldehyde	0.7833	4.01E-05	1.20E-03	4.39E-01	9.02E-04	4.69E-02	3.80E-04	1.39E-01	8.89E-04	3.24E-01	1.28E-04	4.68E-02	2.22E-04	8.11E-02	8.55E-05	3.12E-02	3.80E-04	1.39E-01
Naphthalene	0.0197	1.01E-06	3.02E-05	1.10E-02	2.27E-05	1.18E-03	9.57E-06	3.49E-03	2.24E-05	8.16E-03	3.22E-06	1.18E-03	5.59E-06	2.04E-03	2.15E-06	7.85E-04	9.57E-06	3.49E-03
ethyl benzene	0.0109	5.58E-07	1.67E-05	6.11E-03	1.25E-05	6.52E-04	5.29E-06	1.93E-03	1.24E-05	4.52E-03	1.78E-06	6.51E-04	3.09E-06	1.13E-03	1.19E-06	4.34E-04	5.29E-06	1.93E-03
1,3-butadiene	0.2174	1.11E-05	3.34E-04	1.22E-01	2.50E-04	1.30E-02	1.06E-04	3.85E-02	2.47E-04	9.01E-02	3.56E-05	1.30E-02	6.17E-05	2.25E-02	2.37E-05	8.66E-03	1.06E-04	3.85E-02
Acrolein	0.0339	1.73E-06	5.20E-05	1.90E-02	3.90E-05	2.03E-03	1.65E-05	6.01E-03	3.85E-05	1.40E-02	5.55E-06	2.03E-03	9.62E-06	3.51E-03	3.70E-06	1.35E-03	1.65E-05	6.01E-03
totuene	0.1054	5.39E-06	1.62E-04	5.90E-02	1.21E-04	6.31E-03	5.12E-05	1.87E-02	1.20E-04	4.37E-02	1.73E-05	6.30E-03	2.99E-05	1.09E-02	1.15E-05	4.20E-03	5.12E-05	1.87E-02
chlorobenzene	0.0002	1.02E-08	3.07E-07	1.12E-04	2.30E-07	1.20E-05	9.71E-08	3.55E-05	2,27E-07	8.29E-05	3.27E-08	1.19E-05	5.67E-08	2.07E-05	2.18E-08	7.97E-06	9.71E-08	3.55E-05
hexane	0.0269	1.38E-06	4.13E-05	1.51E-02	3.10E-05	1.61E-03	1.31E-05	4.77E-03	3.05E-05	1.11E-02	4.40E-06	1.61E-03	7.63E-06	2.79E-03	2.94E-06	1,07E-03	1.31E-05	4.77E-03
propylene	0.467	2.39E-05	7.17E-04	2.62E-01	5.38E-04	2.80E-02	2.27E-04	8.28E-02	5.30E-04	1.93E-01	7.64E-05	2.79E-02	1.33E-04	4.84E-02	5.10E-05	1.86E-02	2.27E-04	8.28E-02
lead	0.0083	4.25E-07	1.27E-05	4.65E-03	9.55E-06	4.97E-04	4.03E-06	1.47E-03	9.42E-06	3.44E-03	1.36E-06	4.96E-04	2.36E-06	8.60E-04	9.06E-07	3.31E-04	4.03E-06	1.47E-03
manganese	0.0031	1.59E-07	4.76E-06	1.74E-03	3.57E-06	1.86E-04	1.51E-06	5.49E-04	3.52€-06	1.28E-03	5.07E-07	1.85E-04	8.80E-07	3.21E-04	3.38E-07	1.23E-04	1.51E-06	5.49E-04
mercury	0.002	1.02E-07	3.07E-06	1.12E-03	2.30E-06	1.20E-04	9.71E-07	3.55E-04	2.27E-06	8.29E-04	3.27E-07	1.19E-04	5.67E-07	2.07E-04	2.18E-07	7.97E-05	9.71E-07	3.55E-04
nickel	0.0039	2.00E-07	5.99E-06	2.18E-03	4.49E-06	2.33E-04	1.89E-06	6.91E-04	4.43E-06	1.62E-03	6.38E-07	2.33E-04	1.11E-06	4.04E-04	4.26E-07	1.55E-04	1.89E-06	6.91E-04
arsenic	0.0016	8.18E-08	2.46E-06	8.96E-04	1.84E-06	9.58E-05	7.77E-07	2.84E-04	1.82E-06	6.63E-04	2.62E-07	9.56E-05	4.54E-07	1.66E-04	1.75E-07	6.37E-05	7.77E-07	2.84E-04
total chromium	0.0006	3.07E-08	9.21E-07	3.36E-04	6.91E-07	3.59E-05	2.91E-07	1.06E-04	6.81E-07	2.49E-04	9.82E-08	3.58E-05	1.70E-07	6.21E-05	6.55E-08	2.39E-05	2.91E-07	1.06E-04
copper	0.0041	2.10E-07	6.29E-06	2.30E-03	4.72E-06	2.45E-04	1.99E-06	7.27E-04	4.65E-06	1.70E-03	6.71E-07	2.45E-04	1.16E-06	4.25E-04	4.47E-07	1.63E-04	1.99E-06	7.27E-04
zinc	0.0224	1.15E-06	3.44E-05	1.25E-02	2.58E-05	1.34E-03	1.09E-05	3.97E-03	2.54E-05	9.28E-03	3.67E-06	1.34E-03	6.36E-06	2.32E-03	2.44E-06	8.92E-04	1.09E-05	3.97E-03
hydrogen chloride	0.1863	9.53E-06	2.86E-04	1.04E-01	2.14E-04	1.12E-02	9.05E-05	3.30E-02	2.11E-04	7.72E-02	3.05E-05	1.11E-02	5.29E-05	1.93E-02	2.03E-05	7.42E-03	9.05E-05	3.30E-02
selenium	0.0022	1.13E-07	3.38E-06	1.23E-03	2.53E-06		1.07E-06	3.90E-04	2.50E-06	9.11E-04	3.60E-07	1.31E-04	6.24E-07	2.28E-04	2.40E-07	8.76E-05	1.07E-06	3.90E-04
hexavalent chromium	0.0001	5.12E-09	1.53E-07	5.60E-05	1.15E-07	5.99E-06	4.86E-08	1.77E-05	1.13E-07	4.14E-05	1.64E-08	5.97E-06	2.84E-08	1.04E-05	1.09E-08	3.98E-06	4.86E-08	1.77E-05

* Based on an average brake-specific fuel consumption of 7,000 Btu/hp-hr, a diesel heating value of 19,300 Btu/hp, and a diesel density of 7,09 fb/gal. "Ventura County APCD/ CARB factors

	Horsepower	Time of Operation	Days of Opearation	TRU Diesel Particulate Emission	Diesel Truck Idleing Emission	PM Emission	PM Emission
Idling Sources	(hp)	(hrs)	(days/yr)	Rate (g/Bhp-hr)*	Factor (g/hr)*	Rate (lbs/hr)	Rate (lbs/yr)
Tractor Trailor1		0.083	365		2.57	0.00047088	0.1718723
Tractor Trailor2		0.083	365		2.57	0.00047088	0.1718723
Tractor Trailor3		0.083	365		2.57	0.00047088	0.1718723
Tractor Trailor4		0.083	365		2.57	0.00047088	0.1718723
Tractor Trailor5		0.083	365		2.57	0.00047088	0.1718723
TRU1	50	0.5	52	0.76	3	0.0419426	2.18101545
TRU2	50	0.5	52	0.76	3	0.0419426	2.18101545
TRU3	50	0.5	52	0.76	6	0.0419426	2.18101545

		Emission Factor	Truck Trips	PM Emis	ssion Rate	PM Emission
Line Source	Miles Traveled	(g/mile)*	per Hour	(lbs/hr)		Rate (lbs/yr)
Truck Traffic 1	0.178	0.67	' 1		0.000263267	0.096092494
Truck Traffic 2	0.416	0.67	' 1		0.000615276	0.224575717
Truck Traffic 3	0.06	0.67	' 1		8.87417E-05	0.032390728
Truck Traffic 4	0.104	0.67	' 1		0.000153819	0.056143929
Truck Traffic 5	0.04	0.67	' 1		5.91611E-05	0.021593819
Truck Traffic 6	0.178	0.67	' 10		0.002632671	0.960924945

^{*} Emission Factors taken from SJVAPCD "Guidance for Air Dispersion Modeling"

updat	updated january 2006	2006					
			GMBM	MMBM			
	Facility Score	ore	3.201576	0.9883808			
Facility Name:							
Hour of Operation:	8760						
Influent (MGD)=	2						
		N/A		jū	Digester Gas	S	
Primary Treatment		>				Rate in	
Secondary Treatment		>		External/Internal		MMCFH	
Sludge Drying Beds		z		Externa	lal	00.0	i
Chlorine Contact Tank		z		Hours of Operation	eration	0	
LPG	ဗ			: : :	LPG		
External	rnal		:		Internal		
- 1	=	FLARE		<u> </u>	. (Turbine	
MIMIBLIOH	Gal/nr	(V/N)		JH.	Gal/hr 0	(\/N)	
Hours of	Hours of Operation:	0		Hours of Operation:	eration:	0	
	Recep	Receptor Information	ation				
Receptor Distance Receptor Description		200 200 200 200 200 200 200 200 200 200	Liescolo (Liu de monte aconomica como concesso de la como concesso			· · · · · · · · · · · · · · · · · · ·	
							. '
						:	

Substance Name: CAS ug/l lbs/r lbs/r lbs/r Chloroform 67683 8.1 123.12 0.0140548 3.49E+01 3.99E-03 Chloroform 67683 8.1 1.23.12 0.0140548 3.49E+01 2.26E-03 Ettyl Benzene 1.06467 4.65 7.068 0.0035041 9.68E-00 1.08E-03 Ettyl Benzene 1.0641 2.25 34.2 0.033641 9.68E-00 1.06E-03 Ettyl Benzene 1.0642 2.6 3.004514 2.36E-00 1.06E-03 Trichloroethylene 77604 2.6 3.65 0.004514 1.11E-01 1.26E-03 Hennol 77606 2.6 3.65 0.0045882 1.11E-01 1.26E-03 Benzene 77450 2.6 3.6 3.604582 1.13E-01 2.47E-00 2.8E-04 Sylvene 100422 5.8 6.8 6.0065685 2.49E-01 2.8E-03 Armonoia 7783044 1.9 2.6964 0.0338356		—	POTW EMISSION ESTIMATION	N ESTIMATION			
trance Name: CAS ug/l lbs/yr lbs/hr l				GMBM	GMBM	MMBM	MMBM
mm 67663 8.1 123.12 0.0140548 3.49E+01 iorobenzene 106467 4.65 70.68 0.0080685 1.98E+01 inzene 10641 2.25 3.45 0.0080641 3.5E+01 inchoride 75092 7.6 1.85 0.0035942 3.3E+01 ne Chloride 76082 2.6 39.52 0.004514 1.1E+01 ne Chloride 7656 2.65 39.52 0.004514 1.1E+01 chloride 77435 9.8 148.56 0.004582 1.1E+01 ichoroethane 77435 9.8 148.56 0.004588 1.1E+01 e 77435 5.8 8.16 0.0010064 2.13E+01 in 766447 2.96.5 76.008573 2.00E+01 in 7783064 19.5 2.96.4 0.0338356 2.17E+02	Substance Name:	CAS	l/gu	lbs/yr	lbs/hr	lbs/yr	lbs/hr
lorobenzene 106467 4.65 70.68 0.0080685 1.98E+01 Inzerne 100414 2.25 3.45 0.0039041 9.58E+00 Inzerne 100414 2.25 3.45 0.0039041 9.58E+00 Inchride 75092 2.6 39.52 0.0045144 1.11E+01 Inchroethane 771556 2.65 40.28 0.0045144 1.11E+01 Inchroethane 771556 2.65 40.28 0.0045144 1.11E+01 Inchroethane 771556 2.65 40.28 0.0045144 1.11E+01 Inchroethane 771556 2.65 40.0045144 1.11E+01 Inchroethane 771564 1 Inchroe	Chloroform	67663	8.1	123.12		3.49E+01	3.99E-03
prizene 100414 2.25 34.2 0.0039041 9.58E+00 ne Chloride 75092 7.8 118.56 0.0133342 3.32E+01 ne Chloride 79092 7.8 118.56 0.013342 3.32E+01 oethylene 71556 2.65 40.28 0.0045144 1.11E+01 ichoroethane 71656 2.65 40.28 0.0045982 1.73E+01 ichoroethane 108952 9.8 148.96 0.0170046 2.47E+01 e 10425 5.8 8.816 0.0010064 2.47E+02 ichoroethane 104025 4.9 74.48 0.0086758 2.08E+01 ichoroethane 7664417 299.5 4552.4 0.5196804 6.66E+02 an Sulfide 7783064 19.5 296.4 0.0338356 2.17E+02	!,4,Dichlorobenzene	106467	4.65	70.68	i	1.98E+01	2.26E-03
ne Chloride 75092 7.8 118 56 0.0135342 3.32E+01 oethrylene 79016 2.6 39.52 0.004514 1.11E+01 ichoroethane 7 1656 2.6 3.65 0.0045982 1.11E+01 e 7 10852 9.8 148.96 0.0170046 2.47E+00 e 7 10883 4.9 7.4 0.0080758 2.13E+01 i 1 10883 4.9 7.4 0.0080758 2.09E+01 in 1 10883 4.9 7.4 0.0080758 2.03E+01 in 7 664417 2.99.5 4552.4 0.0338356 2.17E+02 an Sulfide 7 783064 19.5 2.96.4 0.0338356 2.17E+02	Ethyl Benzene	100414	2.25	34.2		9.58E+00	1.09E-03
Oethylene 79016 2.6 39.52 0.004514 1.11E+01 Ichoroethane 71556 2.65 40.28 0.0045982 1.13E+01 1.08952 9.8 148.96 0.0170046 2.47E+01 e 71432 0.58 8.816 0.0017004 2.47E+01 e 71432 0.58 8.816 0.0086788 2.13E+01 t 100425 5.86 89.072 0.010168 2.09E+01 t 1210 5.86 89.072 0.010168 2.09E+01 t 7783064 19.5 2.96.4 0.0338356 2.17E+02 an Sulfide 7783064 19.5 2.96.4 0.0338356 2.17E+02	Methylene Chloride	75092	7.8	118.56		3.32E+01	3.79E-03
ichoroethane 71556 2.65 40.28 0.0045982 1.13E+01 108852 9.8 148.96 0.0170046 1.04E+01 100425 5.8 10.0010064 2.13E+01 100425 5.8 10.0010064 2.13E+01 1008883 4.9 774.48 0.0085023 2.09E+01 1210 5.86 89.072 0.010168 2.49E+01 1210 5.86 89.072 0.010168 0.00E+02 2.05E+01 1210 5.86 10.0085023 1.09E+01 1210 5.86 10.0083024 0.0138356 2.17E+02 1.0010064 1	Trichloroethylene	79016	2.6	39.52	Ē	1.11E+01	1.26E-03
e 108952 9.8 148.96 0.0170046 1.04E+01	1,1,1,Trichoroethane	71556	2.65	40.28	1	1.13E+01	1.29E-03
71432 0.58 8.816 0.0010064 2.47E+00 100425 5 76 0.0086758 2.13E+01 10883 4.9 74.48 0.0086758 2.13E+01 1210 5.86 89.072 0.010168 2.09E+01 1210 5.09E+01 5	Phenol	108952	9.6	148.96	i	1.04E+01	
100425 5 76 0.0086758 2.13E+01 108883 4.9 74.48 0.0085023 2.09E+01 1210 5.86 89.07 2.0010168 2.09E+01 1210 5.86 89.07 0.010168 2.09E+01 1210 5	Benzene	71432	0.58	8.816	!	2.47E+00	: F
108883 4.9 74.48 0.0085023 2.09E+01 1210 5.86 89.072 0.010168 2.49E+01 299.5 4552.4 0.5196804 6.60E+02 296.4 19.5 296.4 0.0338356 2.17E+02 296.4 0.0388356 2.17E+02 296.4 0.038856	Styrene	100425	5	9/	i	2.13E+01	
1210 5.86 89.072 0.010168 2.49E+01 7664417 299.5 455.4 0.5196804 6.60E+02 7783064 19.5 296.4 0.0338356 2.17E+02 217E+02	Toluene	108883	4.9	74.48		2.09E+01	:
7664417 299.5 4552.4 0.5196804 6.60E+02 7783064 19.5 296.4 0.0338356 2.17E+02	Xylene	1210	5.86	89.072	0.010168	2.49E+01	2.85E-03
7783064 19.5 296.4 0.0338356 2.17E+02	Ammonia	7664417	299.5	4552.4		6.60E+02	7.54E-02
	Hydrogen Sulfide	7783064	19.5	296.4		2.17E+02	2.48E-02
					-		
						:	
		-			:	:	
							1
						:	
					:	:	
						: : - !:	
							:
			:				
							:
						<u>.</u>	

			IGESTER	DIGESTER GAS CALCULATIONS	SNOI		:
rance Name: CAS External Internal Digester a 7664417 3.72E-03 2.48E-02 0.00E+00 0.00							
External Internal Ibs/hr	Substance Name:	CAS			Digester	Digester	
## 7664417 3.72E-03 2.48E-02 0.00E+00 anzene 108907 3.08E-04 2.05E-03 0.00E+00 0.00E+00 anzene 10807 3.08E-04 2.05E-03 0.00E+00 0			External	Internal	lbs/hr	lbs/yr	
1,432 1,33E-03 8.85E-03 0.00E+00	mmonia	7664417	3.72E-03	2.48E-02	0.00日+00	0.00E+00	
anzene 108907 3.08E-04 2.05E-03 0.00E+00 nzene 100414 2.61E-02 2.61E-02 0.00E+00 0.00E+00 1.46 5.10E-01 0.00E+00 0.00E+0	enzene	71432	1.33E-03	8.85E-03	0.00E+00	0.00E+00	
100414 2.61E-02 2.61E-02 0.00E+00	hlorobenzene	108907	3.08E-04	2.05E-03	0.00E+00	0.00E+00	,
Pubyde 50000 1.46 5.10E-01 0.00E+00 n Choloride 7647010 2.89E+00 0.00E+00 0	thyl Benzene	100414	2.61E-02	2.61E-02	0.00E+00	0.00E+00	
n Choloride 7647010 2.89E+00 0.00E+00 n Sulfide 7783064 1.17 5.84E-01 0.00E+00 0.00E	ormaldehyde	20000	1.46	5.10E-01	0.00円+00	0.00E+00	1
n Sulfide 7783064 1.17 5.84E-01 0.00E+00 1.00rdorm 71556 4.19E-03 4.19E-03 0.00E+00	ydrogen Choloride	7647010		2.89E+00	0.00E+00	0.00E+00	
horoform 71556 4.19E-03 4.19E-03 0.00E+00 0ethylene 75092 8.67E-02 8.67E-02 0.00E+00 0othylene 127184 2.43E-03 1.62E-04 0.00E+00	ydrogen Sulfide	7783064	1.17	5.84E-01	0.00E+00	0.00E+00	
Dethylene 127184 2.43E-02 6.00E+00 0.00E+00 0.00	ethyl Chloroform	71556	4.19	4.19E-03	0.00日+00	0.00E+00	:
oethylene 127184 2.43E-03 1.62E-04 0.00E+00 108883 9.59E-03 9.59E-03 0.00E+00 0.00E+00 108883 9.59E-03 9.59E-03 0.00E+00	ethylene Chloride	75092	8.67E-02	8.67E-02	0.00円+00	0.00三十00	:
loride 79061 7.31E-04 4.87E-05 0.00E+00	erchloroethylene	127184	2.43E-03	1.62E-04	0.00円+00	0.00E+00	
oethylene 79061 7.31E-04 4.87E-05 0.00E+00 hloride 75014 1.32E-03 6.87E-03 0.00E+00 0.00E+00 1210 5.57E-02 1.15E-01 0.00E+00 0.00E+00 1210 5.57E-02 1.15E-01 0.00E+00	oluene	108883		9.59E-03	0.00E+00	0.00E+00	
hloride 75014 1.32E-03 6.87E-03 0.00E+00 and Chloride 75354 3.08E-04 5.13E-04 0.00E+00 1210 5.57E-02 1.15E-01 0.00E+00 Facility Prioritization GMBM GMBM GARG FOR TOTAL TOT	ichloroethylene	79061	7.31E-04	4.87E-05	0.00E+00	0.00E+00	
ane Chloride 75354 3.08E-04 5.13E-04 0.00E+00 1210 5.57E-02 1.15E-01 0.00E+00 1210 5.57E-02 1.15E-01 0.00E+00	nyl Chloride	75014	1.32E-03	6.87E-03	0.00E+00	0.00E+00	
1210 5.57E-02 1.15E-01 0.00E+00 1200 E+00 1210 5.57E-02 1.15E-01	nylidene Chloride	75354	3.08E-04	5.13E-04	0.00E+00	0.00E+00	
	lene	1210	5.57E-02	1.15E-01	0.00E+00	0.00E+00	
O V O							
O V O							
							!
3,40							
0 0 0			Facili	ty Prioritization		1	
0,40			Z.C.	Ma	-		
C.A.	Substance Name.	S.A.S.	Ē C	TAI			

		lbs/yr	lbs/hr		Cancer	Chronic Acute	Acute	
1,4,Dichlorobenzene	106467	70.68	0.008068		1.321716	0.0015	0	0.00151284
I,1,1,Trichoroethane	71556	40.28	0.004598		0	0.0007	0.000101	0.000101 0.00068973
Acetaldehyde	75070	0	0		0	0	0	0
Acrolein	107028	0.00E+00	0.00E+00		0	0	0	0
Ammonia	7664417	4.55E+03	5.20E-01		0	0.3898	0.2436	0.38976027
Benzene	71432	8.82E+00	1.01E-03		0.4346288	0.0025	0.001161	0.001161 0.00251598
Chlorobenzene	108907	0.00E+00	0.00E+00		0	0	0	0
Shloroform	67663	123.12	0.014055		1.1093112	0.007	0.140548	0.140548 0.14054795
Ethyl Benzene	100414	3.42E+01	3.90E-03		0	0.0003	0	0.00029281
Formaldehyde	20000	0.00E+00	0.00E+00		0	O	0	0
Hydrogen Choloride	7647010	0.00E+00	0.00E+00		0	0	0	0
Hydrogen Sulfide	7783064	2.96E+02	3.38E-02		0	0.5075	1.208415	1.20841487
lapthalene	91203	0.00E+00	0,00E+00		0	0	0	0
Methyl Chloroform	71556	0.00E+00	0.00E+00		0	0	0	0
Methylene Chloride	75092	1,19E+02	1.35E-02		0.201552	0.0051	0.00145	0.00507534
PAH's	1150	0.00E+00	0.00E+00		0	0	0	0
Perchloroethylene	127184	0.00E+00	0.00E+00		0	0	0	0
Phenol	108952	148.96	0.017005		0	0.0128	0.004398	0.004398 0.01275342
Propylene	115071	0	0		0	0	0	0
Styrene	100425	9/	0.008676		0	0.0014	0.00062	0.00144597
Foluene	108883	7.45E+01	8.50E-03		0	0.0043	0.000345	0.000345 0.00425114
richloroethylene	79016	3.95E+01	4.51E-03		0.134368	0.0011	0	0.00112785
inyl Chloride	75014	0.00E+00	0.00E+00		0	0	0	0
Vinylidene Chloride	75354	0.00E+00	0.00E+00		0	0	0	0
Xylene	1210	8.91E+01	1.02E-02		0	0.0022	0.000693	0.00217886
				FOTALS	3.201576			
			-			0 2004	4 770567	
						3.2010	7,70007	

			Group A	p A				
	Ethyl Benzene	Benzene	Styrene	Toluene	Xylene			
Primary Treatment	3.42	0.8816	7.6	7.448	8.9072	Input	Removed Removal	Removal
Secondary Treatment	6.156	1.58688	13.68	13.4064	16.03296	The state of the s	0.4	0.1
Sludge Drying Beds	0	0	0	0	0	9.0	0.564	0.18
Chlorine Contact Tank	0	0	0	0	0	0	0	0
Total Lbs/Yr	9.576	2.46848	21.28	20.8544	24.94016	0.036	0.036	0
								0.28
			Group B	p B				
THE THE THEORY I WIND IN COMPANY TO SERVICE AND THE THEORY IS NOT THE THEORY.	Dichloro-	Methylene-	Trichloro-	Trichloro-			!	:
THE REPORT OF THE PROPERTY OF	penzene	chloride	ethylene	ethane				
Primary Treatment	7.068	11.856	3.952	4.028		Input	Removed	Removal
Secondary Treatment	12.7224	21.3408	7.1136	7.2504			0.4	0.1
Sludge Drying Beds	0	0	0	0		9.0	:	0.18
Chlorine Contact Tank	0	0	0	0		0	0	0
Total Lbs/Yr	19.7904	33.1968	11.0656	11.2784		0.18	0.162	0
							0.982	0.28
			Group C	၁ ရ				
	Phenol							:
			Input	Removed	Removal			
Primary Treatment	1.4896		1	0.4	0.01			
Secondary Treatment	8.9376	_	9.0	0.444	90.0			
Sludge Drying Beds	0		0	0	0			
Chlorine Contact Tank	0		0.156	0.15288	0			
Total Lbs/Yr	10.4272			0.99688	20.0			

Primary Treatment 221,616 0.0 0.1 Secondary Treatment 221,616 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.		Group D			
Input Removed Remo		Chloroform			
treatment 12.312			Input		Removal
reatment 22.1616 0.6 0.42 rig Beds 0 0.43232 0.18 0.1656 Itact Tank 34.916832 0.18 0.1656 Itact Tank Ammonia Ammonia Input Removed Referented E60.098 0.325 Itact Tank 204.858 0.9 0.325 Itact Tank 660.098 0.325 Itact Tank 207.48 0.0 0.0 0.325 Itact Tank 8.892 0.0 0.0 0 Itact Tank 0.8892 0.0 0.0 0 Itact Tank 0.8892 0.0 0.0 0 Itact Tank 217.2612 0.06 0.06 Itact Tank 217.2612 0.06 Itack 217.2612 0.06	Primary Treatment	12.312		0.4	0.1
rige Beds 0 0 0 0 0 0 198 Beds 0.1656 0.1850 0.1656 0.9856 0.9856 0.9856 0.9856 0.9856 0.9856 0.9856 0.9856 0.9858 0.9858 0.9956 0.90 0.00 0.00 0.00 0.00 0.00 0.00 0.0	Secondary Treatment	22.1616	9.0		0.18
Ammonia	Sludge Drying Beds	0	0		
34.916832 0.9856	Chlorine Contact Tank	0.443232	0.18		
Group E Ammonia Input Removed	Total Lbs/Yr	34.916832		0.9856	
Ammonia Input Removed Remove					
Ammonia Input Removed Rem 0 1 0 0 455.24 1 0.1 0 c 204.858 0.9 0.225 660.098 0.325 0.325 Bulfide Input Removed Rem 207.48 1 0.7 8.892 0.3 0.24 0 0 0 0 0 0 217.2612 0.06 0.06 LPG EMISSION CALCULATION		Group E			
Name		Ammonia		:	
455.24 1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.25 0.32			Input		Removal
455.24 1 0.1 0.1 0 0 0 0 0 0 0 0 0 0	Primary Treatment	0	_	0	0
nk 204.858 0<	Secondary Treatment	455.24		0.1	0.1
nk 204.858 0.9 0.225 Geo.098 0.325 Group F Group F Hydrogen Input Removed Rem 207.48 1 0.7 0 nt 8.892 0.3 0.24 0 nk 0.8892 0.06 0 0 nk 0.8892 0.06 0 0 nk 217.2612 0.06 0.06 1 LPG EMISSION CALCULATION 0.04TION 0 0	Sludge Drying Beds	0	0	0	0
Group F Group F Group F Group F Hydrogen Sulfide Input Removed Ren 207.48 1 0.7 0.8892 0.06 0	Chlorine Contact Tank	204.858	0.9		0.045
Group F Hydrogen Input Removed Ren 207.48 1 0.7 1 0.24 0 0 0 0 0 0 0k 0.06 0.06 0 0 0 0 0 0k 0.06 0.06 0 1 217.2612 1 1 LPG EMISSION CALCULATION 1 1	Total Lbs/Yr	660.098		0.325	0.145
Group F Hydrogen Input Removed Ren 207.48 1 0.7 1 8.892 0.3 0.24 0 0 0 0 nk 0.8892 0.06 0.06 nk 217.2612 1 LPG EMISSION CALCULATION		The state of the s			
Hydrogen Input Removed Renoved Renove		Group F			
sulfide Input Removed Ren 207.48 1 0.7 nt 8.892 0.3 0.24 nk 0.8892 0.06 0 nk 0.2892 0.06 0 217.2612 1 1 LPG EMISSION CALCULATION		Hydrogen			
1		sulfide	Input		Removal
14 8.892 0.3 0.24 10 0 0 0 11 0.8892 0.06 0.06 1217.2612 11 11 11 11 11 11 11 11 11 11 11 11 1	Primary Treatment	207.48			0.7
nk 0.8892 0.06 0.06 217.2612 1.1 1.1 1.1 1.1 1.1 1.1 1.1 1.1 1.1 1	Secondary Treatment	8.892	0.3		0.03
11 0.06 0.06 0.06 0.06 0.06 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	Sludge Drying Beds	0	0		0
217.2612 1 PG EMISSION CALCULATION	Chlorine Contact Tank	0.8892	90.0		0.003
LPG EMISSION CALCULATIONS	Total Lbs/Yr	217.2612			0.733
LPG EMISSION CALCULATIONS					
LPG EMISSION CALCULATIONS					
			LPG EMISSION	CALCULAT	SNOL

Substance Name; C10 10-100 > 100				MMBTUH						
e 71432 166E-06 118E-05 3.6E-07 1.03E-05 244E-06 1.00E-05	Substance Name:		<10		>100	Flare		lbs/hr	lbs/yr	
1964 10000 3.66E-06 2.65E-06 7.78E-07 1.02E-04 1.02E-04 1.02E-04 1.02E-05 1.02E-	Benzene	71432	1.66E-06	1.19E-05	3.58E-07	1.03E-05		0		0
1150 1.76E-05 1.76E-05 1.76E-06 2.44E-06 1203 1.60E-06 1.60E-05 1.60E-05 1203 1.60E-06 1.60E-05 1.60E-05 1204	Formaldehyde	20000	3.66E-06	2.65E-06	7.79E-07	1.02E-04		0		: 0
180E-06 180E-05 190E-07 100E-05 190E-07 100E-05 190E-07 100E-06 100E-07 100E	PAH's	1150	1.76E-05	1.76E-05	1.76E-05	2.44E-06		0		0
ehyde 75070 3.16E-06 2.31E-06 6.54E-07 1.02E-06 ne 107028 1.17E-06 9.85E-07 1.02E-06 ne 108883 1.17E-06 9.85E-07 1.02E-06 ne 108883 1.17E-07 1.43E-08 5.16E-06 ne 11507 1.25E-07 1.43E-08 5.16E-06 ne Name: 71432 1.02E-04 1.23E-04 1.65E-06 lehyde 50000 2.16E-03 2.59E-03 1.63E-05 lehyde 75070 1.6E-03 1.26E-06 0 lehyde 75070 1.6E-03 1.69E-06 0 lehyde 75070 1.6E-03 1.69E-06 0 lehyde 107028 6.74E-05 1.61E-07 0 ne 115071 1.53E-03 1.84E-03 0 ne 115071 1.53E-03 1.84E-07 0 lehyde 107028 1.30E-05 1.44E-06 8.24E-07 0 samce Name: 7400 1.20E-06 1.44E-06 8.24E-07 0 lehyde 107028 1.30E-05 1.44E-07 1.61E-07 0 lehyde 107028 1.30E-05 1.44E-07 1.30E-05 1.44E-07 0 lehyde 107028 1.30E-05 1.44E-07 1.30E-07 0 lehyde 107028 1.30E-05 1.44E-07 1.30E-07 0 lehyde 107028 1.30E-05 1.44E-07 1.30E-07 0 lehyde 107028 1.30E-07 1.44E-07 1.30E-07 0 lehyde 107028 1.30E-07 1.44E-07 1.30E-07 0 lehyde 107028 1.44E-07 1.30E-07 0 lehyde 107	Naphthalene	91203	1.60E-06	1.60E-05	1.60E-05			0		0
ne 107028 1.17E-06 9.85E-07 1.02E-06 1.43E-06 1.43E-07 1.10E-07 1.43E-07 1.00E-04 1.23E-04 1.65E-06 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	Acetaldehyde	75070	3.16E-06	2.31E-06	6.54E-07	1.02E-05		0		0
ne 115071 2.45E-05 1.78E-05 5.21E-06 1.43E-06 1.08883 5.28E-07 1.43E-07 5.16E-06 1.08883 5.28E-07 1.43E-07 5.16E-06 1.08883 5.28E-07 1.43E-07 5.16E-06 1.08883 5.28E-07 1.43E-07 1.43E-07 5.16E-06 1.000 1.0	Acrolein	107028	1.17E-06	9.85E-07	1.96E-07	1.02E-06		0		0
108883 5.28E-07 3.85E-07 1.16E-07 5.16E-06 1210 1.37E-07 1.43E-07 1.48E-08 5.16E-06 1210 1.37E-07 1.43E-07 1.48E-08 5.16E-06 1210 1.02E-04 1.25E-04 1.65E-06 1210 1.160 1.76E-05 1.76E-05 1.46E-06 1210 1.76E-05 1.76E-05 1.46E-07 1210 1.20E-04 1.63E-05 1210 1.20E-04 1.63E-05 1210 1.20E-05 1.46E-07 1210 1.20E-05 1.44E-05 1.44E-07 1210 1.20E-05 1.44E-05 1.44E-	Propylene	115071	2.45E-05	1.78E-05	5.21E-06	1.43E-06		0		0
1210 1.97E-07 1.43E-08 5.16E-06 1.05E-06 1.05E-06 1.05E-06 1.05E-06 1.05E-06 1.05E-04 1.05E-06 1.05E-07 1.05E-06 1.05E-07 1.05E-06 1.05E-06 1.05E-07 1.	Toluene	108883	5.28E-07	3.85E-07	1.16E-07	5.16E-06		0		0
INTERNAL	Xylene	1210		1.43E-07	4.48E-08	5.16E-06				0
INTERNAL										:
Toe Name: Hp Turbine lbs/hr				NTERNAL				:		
roe Name:				유						
ee 71432 1.02E-04 1.23E-04 1.65E-06 0 Jehyde 50000 2.16E-03 2.59E-03 1.63E-05 0 Jehyde 1.550 1.76E-05 1.76E-05 2.44E-06 0 Jehyde 75070 1.69E-04 2.02E-04 1.63E-06 0 Jehyde 75070 1.69E-04 2.02E-04 1.63E-06 0 Jehyde 75070 1.69E-05 3.97E-05 3.28E-05 0 Jehyde 75070 1.69E-04 2.02E-04 0.03E-06 0 Jehyde 75070 1.69E-05 3.97E-05 8.24E-07 0 Jehyde 75070 1.20E-05 1.44E-05 8.24E-07 0 Jehyde 75070 1.20E-05 1.44E-05 8.24E-07 0 Jehyde 75070 1.20E-06 1.20E-	Substance Name:		<1000	>1000	Turbine		lbs/hr	lbs/yr		
Jehyde 50000 2.16E-03 2.59E-03 1.63E-05 0 Jalene 1150 1.76E-05 1.76E-05 2.44E-06 0 Jalene 91203 1.60E-05 1.60E-05 0 0 ehyde 75070 1.69E-04 2.02E-04 1.63E-06 0 ne 107028 6.74E-05 8.08E-05 1.61E-07 0 ne 115071 1.53E-03 1.84E-03 2.88E-05 0 s 108883 3.30E-05 1.44E-05 8.24E-07 0 stance Name: CAS TOTAL	Benzene	71432	1.02E-04	1.23E-04	1.65E-06		0	0		:
alene 91203 1.76E-05 2.44E-06 0 0 olehyde 75070 1.69E-04 2.02E-04 1.63E-06 0 olehyde 75070 1.69E-04 2.02E-04 1.63E-06 0 olehyde 115071 1.53E-03 1.84E-03 2.88E-05 0 olehyde 115071 1.53E-03 1.84E-05 8.24E-07 0 olehyde 12.00E-05 1.44E-05 8.24E-07 0 olehyde 12.00E	Formaldehyde	20000	2.16E-03	2.59E-03	1.63E-05		0	0		•••
alene 91203 1.60E-05 1.60E-05 0 0 0 0 0 0 0 0 0	PAH's	1150	1.76E-05	1.76E-05	2.44E-06		0	0		
ehyde 75070 1.69E-04 2.02E-04 1.63E-06 0 1 107028 6.74E-05 8.08E-05 1.61E-07 0 ne 115071 1.53E-03 1.84E-05 0 1 108883 3.30E-05 3.97E-05 8.24E-07 0 1 210 1.20E-05 1.44E-05 8.24E-07 0	Naphthalene	91203	1.60E-05	1.60E-05			0	0		
ne 115071 1.53E-05 1.61E-07 0 0 ne 116071 1.53E-03 1.84E-05 0 0 a 108883 3.30E-05 3.97E-05 8.24E-07 0 0 1210 1.20E-05 1.44E-05 8.24E-07 0 0 Facility Prioritization MMBM	Acetaldehyde	75070	1.69E-04	2.02E-04	1.63E-06		0	0		:
ne 115071 1.53E-03 1.84E-05 2.88E-05 0 1.84E-07 0 1.20E-05 1.44E-05 8.24E-07 0 1.20E-05	Acrolein	107028	6.74E-05	8.08E-05	1.61E-07		0	0		
\$ 108883 3.30E-05 3.97E-07 8.24E-07 0 1210 1.20E-05 1.44E-05 8.24E-07 0 1210 1.20E-05 1.44E-05 8.24E-07 0 MMBM MMB	Propylene	115071	1.53E-03	1.84E-03	2.88E-05		0	0		
tance Name: CAS 1.20E-05 1.44E-05 8.24E-07 0 1.20E-05 1.44E-05 8.24E-07 0	Toluene	108883	3.30E-05		8.24E-07		0	0		
CAS TOTA	Xylene	1210		1.44E-05			0	0		
CAS TOTA										
CAS TOTA										
MMB CAS TOTA									!	
MMB CAS TOT									- 	
CAS				Facility Pri	oritization					: :
CAS								:		
CAS			MME	≥:					:	-
	Substance Name:		101	A.L.						

Г	852.54 1255 2555					\$							[42] [42]	· {							2 (S) 7 (S)			<u>. </u>			:	:
																									:		;	
	0.000424	0.000193	0	0	0.056515	0.000704	0	0.039859	8.2E-05	0	0	3.885768	0	0	0.001421	0	0	0.000893	0	0.000405	0.00119	0.000316	0	0	0.00061	0.988381		
Acute	0	2.84E-05 0.000193	0	0	1.74	0.000325 (0	0.039859 (0	0	0	0.885768 0.885768	0	0	0.000406 (0	0	0.000308	0	0.000174 (9.65E-05	0	0	0	0.000194			:
Chronic	0.000424	0 0.000193	0	0	0 0.056515 0.035322		0	0.001993	8.2E-05	0	0	0.372023 (0	0	0.001421 (0	0.000893	0	0.000405 (0.00119	0.000316	0	0	0.00061			0.988381
Cancer	0.37008 0.000424	0	0	0	0	0.121696 0.000704	0	0.314601	0	0	0	0	0	0	0.056435	0	0	0	0	0	0	0.037623	0	0	0	0.900435		
																				-						TOTALS		
bs/hr	19.7904 0.002259	0.001287	0	0.00E+00	7.54E-02	2.82E-04	0.00E+00	0.003986	1,09E-03	0.00E+00	0.00E+00	2.48E-02	0.00E+00	0.00E+00	3.79E-03	0.00E+00	0.00E+00	0.00119	0	0.002429	2.38E-03	1.26E-03	0.00E+00	0.00E+00	2.85E-03	•		
lbs/yr	19.7904	11.2784	0	0.00E+00	6.60E+02	2.47E+00	0,00E±00	34.916832	9.58E+00	0.00E+00	0.00E+00	2.17E+02	0.00E+00	0.00E+00	3.32E+01	0.00E+00	0.00E+00	10.4272	0	21.28	2:09E+01	1.11E+01	0.00E+00	0.00E+00	2.49E+01			
	106467	71556	75070	107028	7664417	71432	108907	67663	100414	20000	7647010	7783064	91203	71556	75092	1150	127184	108952	115071	100425	108883	79016	75014	75354	1210			
	I,4,Dichlorobenzene	,1,1,Trichoroethane	Acetaldehyde	Acrolein	Ammonia	nzene	Chlorobenzene	Chloroform	Ethyl Benzene	⁻ormaldehyde	Hydrogen Choloride	Hydrogen Sulfide	ipthalene	sthyl Chloroform	Viethylene Chloride	PAH's	Perchloroethylene	Phenol	Propylene	Styrene	luene	Trichloroethylene	nyl Chloride	Vinylidene Chloride	Xylene			

Commercial Dry Cleaners Facility Emissions

Operating Days: 313 days/yr Hours per day: 12 hrs/day

Total VOC Emissions:* 2207 lb/yr 0.59 lb/hr

Toxic Emissions **

CAS Name % VOC lbs/hr lbs/yr 127184 perchloroethylene 60 0.352556 1324.2 71556 1,1,1-trichloroethan 40 0.235037 882.8

* EPA AP-42

** CARB Speciate

Gasoline Dispensing Facility Emissions

					CAS	98132	43378 43220 43212	43229 43230	43262	45202	43291	43214
		Emissions With Control (tons/vr)	1.60 0.22 0.91	3.63	Emission Rate (tons/yr) SAROAD	1.27E+00	6.10E-01 2.64E-01 2.28E-01	2.02E-01 1.11E-01	9.58E-02 7.07E-02	5.776-02	5.62E-02 5.22E-02	4.72E-02
		Emissions With Control (lb/yr) 1813.54	3195.28 431.80 1813.54	7254.16	Emission Rate (lb/yr)	2.53E+03	1.22E+03 5.28E+02 4.56E+02	4.04E+02 2.22E+02	1.92E+02 1.41E+02	1.15E+02	1.12E+02 1.04E+02	9.43E+01
10 gal/trip 83 83 24 hrs/day	gal gal gal	Emissions With Control (lb/hr)	0.36 0.05 0.21	0.83	Emission Rate (lb/hr)	2.89E-01	1.39E-01 6.03E-02 5.21E-02	4.61E-02 2.53E-02	2.19E-02 1.61E-02	1.32E-02	1.28E-02 1.19E-02	1.08E-02
10 1183 1183 24	492.92 gal 11,830 gal 4,317,950 gal	TOG - With Control (lb/1000 gal) 0.42	0.74 0.1 0.42		WEIGHT % of TOG	34.879988	16.829987 7.28 6.29	5.57 3.059999	2.639998 1.95	1.589998	1.549998	1.299998
Average Gallons per trip Daily trips in Daily Trips out Daily Operating Hours	Total Hourly Throughput Total Daily Throughput Total Annual Throughput	Emissions Description Underground Tanks - Working Loss Vehicle Refueling - Vapor	Displacement Underground Tanks - Breathing Loss Vehicle Refueling - Spillage	TOTAL TOG EMISSIONS	TOXIC EMISSIONS CHEMICAL NAME	ISOPENTANE METHYL T-BUTYL ETHER	(MTBE) N-PENTANE N-BUTANE	2-METHYLPENTANE 3-METHYLPENTANE	METHYLCYCLOPENTANE 2.3-DIMETHYLBUTANE	TOLUENE	Z,Z-DIMETHYCBOTANE N-HEXANE	ISOBUTANE

2,2,4-TRIMETHYLPENTANE	1.209998	1.00E-02	8.78E+01	4.39E-02	43276	540841
2-METHYL-2-BLITENE	1.10	8.45E-03	7.40E+01	4.2 IE-02 3 70E-02	43728	59333 513350
CYCLOPENTANE	0.98	8.12E-03	7.11E+01	3.55E-02	43242	287923
CYCLOHEXANE	0.96	7.95 E- 03	6.96E+01	3.48E-02	43248	110827
3-METHYLHEXANE	0.74	6.13 E- 03	5.37 E +01	2.68E-02	43295	589344
TRANS-2-PENTENE	0.73	6.05E-03	5.30E+01	2.65E-02	43226	646048
2-METHYLHEXANE	29.0	5.55 E- 03	4.86E+01	2.43E-02	43275	591764
2,3-DIMETHYLPENTANE	0.65	5.38E-03	4.72 E +01	2.36E-02	43274	565593
TRANS-2-BUTENE	0.59	4.89E-03	4.28 E +01	2.14E-02	43216	624646
2,4-DIMETHYLPENTANE	0.51	4.22 E -03	3.70E+01	1.85E-02	43271	108087
2-METHYL-1-BUTENE	0.41	3.40E-03	2.97E+01	1.49E-02	43225	563462
N-HEPTANE	0.39	3.23 E- 03	2.83E+01	1.41E-02	43232	142825
METHYLCYCLOHEXANE	0.38	3.15E-03	2.76E+01	1.38E-02	43261	108872
BENZENE	0.36	2.98 E- 03	2.61E+01	1.31E-02	45201	71432
CIS-2-BUTENE	0.34	2.82E-03	2.47E+01	1.23E-02	43217	590181
M-XYLENE	0.32	2.65E-03	2.32 E +01	1.16E-02	45205	108383
2,3,4-TRIMETHYLPENTANE	0.31	2.57E-03	2.25E+01	1.12 E- 02	43279	565753
2,3,3-TRIMETHYLPENTANE	0.31	2.57E-03	2.25E+01	1.12 E -02	43280	560214
CIS-2-PENTENE	0.3	2.48 E- 03	2.18E+01	1.09 E -02	43227	627203
PROPANE	0.28	2.32 E- 03	2.03E+01	1.02 E -02	43204	74986
1-PENTENE	0.22	1.82E-03	1.60E+01	7.98 E- 03	43224	109671
2-METHYL-2-PENTENE	0.18	1.49 E- 03	1.31E+01	6.53 E -03	98004	625274
ISOBUTYLENE	0.16	1.32E-03	1.16E+01	5.80 E -03	43215	115117
2,2,5-TRIMETHYLHEXANE	0.14	1.16E-03	1.02E+01	5.08 E -03	98033	3522949
2,4-DIMETHYLHEXANE	0.13	1.08 E- 03	9.43 E +00	4.72E-03	43277	589435
1-BUTENE	0.12	9.94E-04	8.70E+00	4.35 E- 03	43213	106989
2-METHYLHEPTANE	0.12	9.94E-04	8.70E+00	4.35E-03	98140	592278
O-XYLENE	0.12	9.94 E- 04	8.70E+00	4.35E-03	45204	95476
3-METHYLHEPTANE	0.12	9.94E-04	8.70E+00	4.35 E -03	43298	589811
2,5-DIMETHYLHEXANE	0.12	9.94 E- 04	8.70E+00	4.35 E -03	43278	592132
ETHYLBENZENE	0.11	9.11E-04	7.98E+00	3.99 E- 03	45203	100414
4-METHYL-TRANS-2-						
PENTENE	0.1	8.28 E -04	7.25 E +00	3.63E-03	43293	674760
P-XYLENE	0.1	8.28 E- 04	7.25E+00	3.63E-03	45206	106423
CYCLOPENTENE	60:0	7.45 E -04	6.53E+00	3.26E-03	43292	142290
2-METHYL-3-						
ETHYLPENTANE	0.09	7.45 E -04	6.53E+00	3.26E-03	91034	609267
TRANS-2-HEXENE	60.0	7.45E-04	6.53E+00	3.26E-03	98034	4050457
3-METHYL-1-BUTENE	0.08	6.62 E- 04	5.80E+00	2.90E-03	43223	563451
ETHYLCYCLOHEXANE	0.07	5.80 E -04	5.08E+00	2.54E-03	43288	1678917
3-METHYL-TRANS-2-						
PENTENE	90.0	4.97E-04	4.35E+00	2.18 E- 03	43270	616126
2-METHYL-1-PENTENE	90.0	4.97E-04	4.35E+00	2.18 E- 03	98040	763291
2,2-DIMETHYLPENTANE	90.0	4.97E-04	4.35E+00	2.18 E -03	90042	590352
4-METHYLHEPTANE	90.0	4.97E-04	4.35E+00	2.18 E -03	43297	589537
N-OCTANE	0.05	4.14 E- 04	3.63E+00	1.81 E- 03	43233	111659

CIS-3-HEXENE	0.05	4.14E-04	3.63E+00	1.81 E- 03	98003	7642093
2,2,3-TRIMETHYLPENTANE	0.04	3.31E-04	2.90E+00	1.45 E -03	43296	564023
3-ETHYLPENTANE	0.04	3.31E-04	2.90E+00	1.45 E -03	43300	617787
CIS-2-HEXENE	0.04	3.31 E- 04	2.90E+00	1.45 E -03	98035	7688213
1-METHYL-3-						
ETHYLBENZENE	0.04	3.31E-04	2.90E+00	1.45 E- 03	99912	620144
3-METHYL-CIS-2-PENTENE	0.04	3.31 E- 04	2.90E+00	1.45 E- 03	98163	922623
1,2,4-TRIETHYLBENZENE	0.04	3.31E-04	2.90E+00	1.45 E- 03	91119	887441
1-HEXENE	0.03	2.48E-04	2.18E+00	1.09 E -03	43245	592416
4-METHYL-1-PENTENE	0.03	2.48E-04	2.18E+00	1.09 E- 03	98135	691372
2-HEXENES	0.03	2.48E-04	2.18E+00	1.09 E -03	43246	592438
1,3,5-TRIETHYLBENZENE	0.02	1.66E-04	1.45 E +00	7.25 E -04	91117	102250
4-METHYL-CIS-2-PENTENE	0.02	1.66E-04	1.45E+00	7.25 E -04	98170	691383
2-ETHYL-1-BUTENE	0.02	1.66 E -04	1.45 E +00	7.25E-04	98002	760214
1-METHYL-4-						
ETHYLBENZENE	0.02	1.66E-04	1.45 E +00	7.25E-04	99914	622968
N-NONANE	0.01	8.28E-05	7.25E-01	3.63 E- 04	43235	111842
3,3-DIMETHYLHEXANE	0.01	8.28 E -05	7.25E-01	3.63E-04	98171	563166
2,3-DIMETHYLHEXANE	0.01	8.28E-05	7.25 E- 01	3.63 E -04	98139	584941
2,2-DIMETHYLHEXANE	0.01	8.28E-05	7.25E-01	3.63 E- 04	98138	590738
ISOPROPYLBENZENE						
(CUMENE) CIS-1,2-	0.01	8.28E-05	7.25E-01	3.63 E- 04	98043	98828
DIMETHYLCYCLOHEXANE T AMY: METHY ETHER	0.01	8.28E-05	7.25E-01	3.63 E -04	91055	2207014
(TAME)	0.01	8.28E-05	7.25E-01	3.63 E -04	91016	994058
1,2,3-TRIMETHYLBENZENE 1-METHYL-2-	0.01	8.28 E -05	7.25E-01	3.63 E -04	45225	526738
ETHYLBENZENE	0.01	8.28 E- 05	7.25E-01	3.63 E -04	99915	611143
TOTAL		8.28E-01	7.25E+03	3.63E+00		

Restaurant Emissions

lbs of meat per week

Fast Food Emissions	Hamburger F	Poultry w	// skin Poultry w/o skin	Pork
	800		265	
	360		110	110
	360		110	110

	Ham	Hamburger	Poultry	Poultry w/ skin	Poultry	Poultry w/o skin	Pork	
	PAH w/o		PAH w/o		PAH w/o		PAH w/o	
Emission Factors	Napthalene	Napthalene	Napthalene	Napthalene	Napthalene	Napthalene	Napthalene	Napthalene
Food1	0.000724	0.046	•	1	0.00046	0.018	: 1	1
Food2	0.000054	0.012	•	-	0.000044	0.018	0.000044	0.002
SITDOWN	0.000054	0.012	ı	ı	0.000044	0.018	0.000044	0.002

Toxic Emissions	CAS	FOOD1 (lbs/hr)	FOOD1 (lbs/yr)	FOOD2 (lbs/hr)	FOOD2 (lbs/yr)	(lbs/hr)_FOOD1 (lbs/yr)_FOOD2 (lbs/hr)_FOOD2 (lbs/yr)_SITDOWN (lbs/hr)_SITDOWN	SITDOWN (lbs/yr)
Benzo(a)pyrene	50328	2.08661E-06	31E-06 0.018278679	8.66667E-08	0.0007592	8.66667E-08	0.0007592
Napthalene	91203	0.00012372	12372 1.083789286	1.94048E-05	0.169985714	1.94048E-05	0.169985714

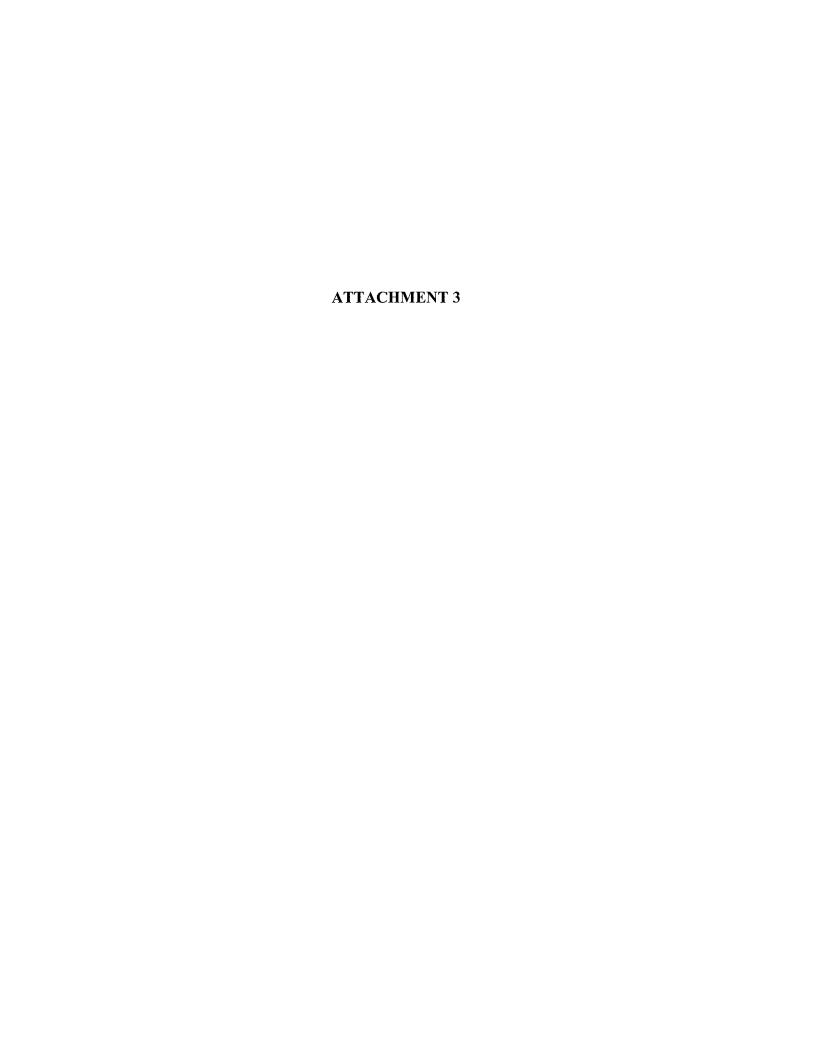
Furniture Manufacturing Emissions

Daily Hours of Operation

12 hrs/day

Total Emission Rates Hourly Yearly

10 lb/hr 21.9 tons/yr


			~	~		~	~	~		~	~			~~	٥.	٥.	٥.		٥.		0.
		1.30E+04	6.05E+03	5.12E+03		4.48E+03	4.46E+03	2.37E+03		1.86E+03	1.36E+03			1.33E+03	6.83E+02	6.33E+02	5.51E+02		4.29E+02		4.22E+02
	CAS	67641	74986	1330207		8704	106978	108883		78933	115106			68476868	67630	4407	100414		75092		111762
	SAROAD	43551	43204	45102		99151	43212	45202		43552	98018			99266	43304	99133	45203		43802		98074
Emissions	(tons/yr)	6.48E+00	3.02E+00	2.56E+00		2.24E+00	2.23E+00	1.19E+00		9.29E-01	6.81E-01			6.64E-01	3.42E-01	3.16E-01	2.75E-01		2.15E-01		2.11E-01
	Emissions (g/s)	3.73E-01	1.74E-01	1.47E-01		1.29E-01	1.28E-01	6.83E-02		5.34E-02	3.92E-02			3.82E-02	1.97E-02	1.82E-02	1.58E-02		1.24E-02		1.21E-02
	Emissions (lb/hr)	2.96E+00	1.38E+00	1.17E+00		1.02E+00	1.02E+00	5.42E-01		4.24E-01	3.11E-01			3.03E-01	1.56E-01	1.44E-01	1.26E-01		9.80E-02		9.64E-02
WEIGHT %	of TOG	29.601	13.806	11.693		10.218	10.185	5.420		4.242	3.110			3.032	1.560	1.445	1.258		0.980		0.964
	CHEMICAL NAME	ACETONE	PROPANE	ISOMERS OF XYLENE	DISTILLATES/NAPHTHA/MIN	ERAL SPIRITS	N-BUTANE	TOLUENE	METHYL ETHYL KETONE	(MEK) (2-BUTANONE)	DIMETHYL ETHER	HYDROCARBON	PROPELLANT (LPG,	SWEETENED}	ISOPROPYL ALCOHOL	MISC. ESTERS	ETHYLBENZENE	DICHLOROMETHANE	(METHYLENE CHLORIDE)	BUTYL CELLOSOLVE {2-	BUTOXYETHANOL} {EGBE}

8.86E-02 1.12E-02 1.94E-01 5.96E-02 7.51E-03 1.30E-01 1.92E-02 2.41E-03 4.20E-02 1.79E-02 2.41E-03 3.93E-02 1.37E-02 1.26E-03 3.00E-02 1.00E-02 1.26E-03 2.20E-02 1.00E-02 1.26E-03 2.00E-02 1.00E-02 1.26E-03 2.00E-02 1.00E-02 1.26E-03 2.00E-02 1.00E-02 1.26E-03 2.00E-02 9.15E-03 1.15E-03 2.00E-02 9.15E-03 1.15E-03 2.00E-02 1.00E-02 1.26E-03 2.06E-02 8.09E-02 1.26E-03 1.36E-01 8.09E-02 1.02E-02 1.77E-01 7.11E-02 8.96E-03 1.36E-01 6.03E-02 7.71E-03 1.32E-01 6.03E-02 7.71E-03 9.37E-02 4.26E-02 5.39E-03 9.37E-02 3.82E-02 4.81E-03 5.55E-02 2.31E-02 2.91E-03 5.05E-02 2.28E-02 2.87E-03 4.99E-03	T.51E-03 7.51E-03 2.41E-03 2.41E-03 2.26E-03 1.26E-03 1.26E-03 1.26E-03 1.26E-03 1.26E-03 7.22E-04 7.22E-04 7.22E-04 7.22E-02 8.96E-03 8.35E-03 7.71E-03	METHYL ISOBUTYL KETONE 0.886 8.8 OTHER, MISC. VOC COMPOUNDS	AGGREGATED IN PROFILE 0.596 5.9	0.192	0.148	1,2,4-TRIMETHYLBENZENE (1,3,4-TRIMETHYLBENZENE) 0.137 1.3	0.100	0.100		Components of Mineral Spirits Wt % Emissis	SOMERS OF UNDECANE 7.917		6.487	METHYL PROPYLCYCLOHEX, 5.988		ETHYLMETHYLCYCLOHEXAN 4.268	4.188		SOMERS OF BUTYLBENZEN 3.738998	2.478998		TRIMETHYLBENZENES (MIXE 2.228998
1.94E-01 1.30E-01 4.20E-02 3.93E-02 3.93E-02 2.19E-02 2.00E-02 2.00E-02 1.26E-01 1.36E-01 1.35E-01 1.35E-01 9.37E-02 9.37E-02 8.37E-02 6.05E-		8.86E-02 1.12E-02	5.96E-02 7.51E-03	1.92E-02 2.41E-03 1.79E-02 2.26E-03	1.48E-02 1.86E-03	1.37E-02 1.72E-03																
	43560 99146 99150 43305 43305 43231 43248 43248 43248 43248 43248 43248 43248 43248 43264 1376+02 2.646+02 2.646+02 2.646+02 1.916+02 1.876+02 1.876+02 1.116+02 1.016+02 1.	1.94E-01	1.30E-01	4.20E-02 3.93E-02	3.24E-02	3.00E-02	2.20E-02	2.19E-02	1.26E-02	tons/yr	1.77E-01	1.56E-01	1.45E-01	1.34E-01	1.32E-01	9.55E-02	9.37E-02	9.33E-02	8.37E-02	5.55E-02	5.05E-02	4.99E-02
108101 8986 8701 71363 4402 110827 110543 91203		3.88E+02	2.61E+02	8.39E+01 7.86E+01	6.48E+01	5.99E+01	4.40E+01	4.38E+01	2.51E+01													

.

9.62E+01 9.44E+01 8.99E+01 7.51E+01	6.66E+01 5.01E+01 4.39E+01	4.39E+01 4.25E+01 4.07E+01	3.45E+01 3.00E+01 2.86F+01	2.69E+01 2.64E+01	2.46E+01 2.46E+01	2.46E+01 2.46E+01	2.46E+01	2.24E+01 2.24E+01	2.10E+01	7.92E+01	1.92E+01	1.70E+01	1.57E+01	1.57E+01	1.57E+01	1.5/E+01 1.5/E+01	1.52E+01	1.43E+01	1.39E+01
4.81E-02 4.72E-02 4.50E-02 3.76E-02	3.43E-02 3.33E-02 2.51E-02 2.19E-02	2.19E-02 2.19E-02 2.13E-02 2.04E-02	1.72E-02 1.50E-02 1.43E-02	1.34E-02 1.32E-02	1.23E-02 1.23E-02	1.23E-02 1.23E-02	1.23E-02	1.12E-02 1.12E-02	1.05E-02	9.62E-03	9.62E-03	8.50E-03	7.83E-03	7.83E-03	7.83E-03 7.83E-03	7.83E-03	7.61E-03	7.16E-03	6.94E-03
2.77E-03 2.72E-03 2.59E-03 2.16E-03	2.01E-03 1.92E-03 1.44E-03 1.26E-03	1.26E-03 1.22E-03 1.17E-03	9.91E-04 8.63E-04 8.24E-04	7.72E-04 7.60E-04	7.08E-04 7.08E-04	7.08E-04 7.08E-04	7.08E-04	6.44E-04 6.44E-04	6.05E-04	5.54E-04	5.54E-04	4.89E-04 4.89E-04	4.51E-04	4.51E-04	4.51E-04	4.51E-04	4.38E-04	4.12E-04	3.99E-04
2.20E-02 2.15E-02 2.05E-02 1.72E-02	1.52E-02 1.52E-02 1.14E-02 1.00E-02	1.00E-02 1.00E-02 9.71E-03 9.30E-03	7.87E-03 6.85E-03 6.54E-03	6.13E-03 6.03E-03	5.62E-03 5.62E-03	5.62E-03 5.62E-03	5.62E-03	5.11E-03	4.80E-03	4.00E-03 4.39E-03	4.39E-03	3.88E-03	3.58E-03	3.58E-03	3.58E-03	3.58E-03 3.47E-03	3.47E-03	3.27E-03	3.17E-03
2.148998 2.108998 2.009 1.679	1.488998 1.488998 1.12 0.98	0.98 0.95 0.95	0.77 0.67 0.64	0.6	0.55 0.55	0.55	0.55	0.5	0.47	0.43	0.43	0.38	0.35	0.35	0.35	0.35	0.34	0.32	0.31
C10 INTERNAL ALKENES ISOPROPYLCYCLOHEXANE TRIMETHYLCYCLOHEXANE BUTYLCYCLOHEXANE	2-METHYLOCTANE ISOMERS OF DODECANE C11 INTERNAL ALKENES	N-PROPYLBENZENE DIMETHYLETHYLCYCLOHEX METHYLUNDECANE	PROPENYLCYCLOHEXANE METHYLDECENE TETRAMETHYLPENTANONE	T-DECAHYDRONAPHTHALEN ETHYLCYCLOHEXANE	METHYLDECALINS TETRAMETHYLCYCLOPENTA	DIMETHYLHEPTANES PROPYL HEPTENE	DIETHYLMETHYLCYCLOHEX,	ETHYL PROPYLCYCLOHEXAN	TRANS-1,3-DIMETHYLCYCLO	2,4-DIMETHYL-1-PENTENE	ISOPROPYLMETHYLCYCLOH	1-METHYL-2-ETHYLBENZENE	ETHYLBENZENE	TRIMETHYLOCTANES	NAPH HALENE HDIMIH KO - INKLIN	I KIME I HITCHEAEINE ETHYI HEXANE	INDENE	ISOMERS OF UNDECYNE	T-BUTYLBENZENE

DIMETHYLDECANE	0.29	2.96E-03	3.73E-04	6.49E-03	1.30E+01
CHLOROBENZENE	0.26	2.66E-03	3.35E-04	5.82E-03	1.16E+01
DIMETHYLUNDECANE	0.24	2.45E-03	3.09E-04	5.37E-03	1.07E+01
ETHYLOCTANE	0.21	2.15E-03	2.70E-04	4.70E-03	9.40E+00
TRIMETHYLCYCLOHEXANOL	0.17	1.74E-03	2.19E-04	3.80E-03	7.61E+00
PENTYLINDENECYCLOHEXAI	0.17	1.74E-03	2.19E-04	3.80E-03	7.61E+00
C11 ALKYLPHENOLS	0.17	1.74E-03	2.19E-04	3.80E-03	7.61E+00
NONADIENE	0.17	1.74E-03	2.19E-04	3.80E-03	7.61E+00
OCTAHYDROINDENES	0.17	1.74E-03	2.19E-04	3.80E-03	7.61E+00
TRIMETHYLCYCLOPENTANO	0.15	1.53E-03	1.93E-04	3.36E-03	6.71E+00
DIMETHYLBENZYLALCOHOL	0.15	1.53E-03	1.93E-04	3.36E-03	6.71E+00
C12 INTERNAL ALKENES	0.12	1.23E-03	1.54E-04	2.69E-03	5.37E+00
OCTANOL	0.1	1.02E-03	1.29E-04	2.24E-03	4.48E+00
DIMETHYOCTYNE DIOL	0.1	1.02E-03	1.29E-04	2.24E-03	4.48E+00
A-PINENE	0.1	1.02E-03	1.29E-04	2.24E-03	4.48E+00
OCTAHYDROPENTALENE	0.1	1.02E-03	1.29E-04	2.24E-03	4.48E+00
ETHYLMETHYLHEXANE	0.1	1.02E-03	1.29E-04	2.24E-03	4.48E+00
C11 DIALKYL BENZENES	0.1	1.02E-03	1.29E-04	2.24E-03	4.48E+00
ISOMERS OF DECYNE	0.07	7.15E-04	9.01E-05	1.57E-03	3.13E+00
ISOMERS OF TRIDECANE	0.05	5.11E-04	6.44E-05	1.12E-03	2.24E+00
TETRAMETHYLTHIOUREA	0.05	5.11E-04	6.44E-05	1.12E-03	2.24E+00
DIMETHYLBUTYLCYCLOHEX	0.05	5.11E-04	6.44E-05	1.12E-03	2.24E+00
BENZOTHIAZOLE	0.05	5.11E-04	6.44E-05	1.12E-03	2.24E+00
2-METHYLPENTANE	0.02	2.04E-04	2.57E-05	4.48E-04	8.95E-01
TRIMETHYLDECANE	0.02	2.04E-04	2.57E-05	4.48E-04	8.95E-01
METHYLCYCLOHEXANE	0.02	2.04E-04	2.57E-05	4.48E-04	8.95E-01
1-NONENE	0.02	2.04E-04	2.57E-05	4.48E-04	8.95E-01

The following table represents the highest health risk for all five years of met data for the Gateway Madera Project. As can be seen excess cancer, chronic and acute risks are below the thresholds of significance. The PMI/MEI results are attached on the following pages.

		Risk	
Year	Cancer Risk	Chronic Risk	Acute Risk
2000	4.87E-06	1.92E-02	9.38E-02
2001	4.98E-06	2.03E-02	8.88E-02
2002	5.20E-06	1.96E-02	9.13E-02
2003	5.43E-06	1.85E-02	9.26E-02
2004	4.85E-06	1.94E-02	9.40E-02

 $\label{lem:composition} Rep_PMI.txt $$ FILE: C:\Documents and Settings\vleo\Desktop\vleo\Gateway 00\Rep_PMI.txt $$$

EXCEPTION REPORT (there have been no changes or exceptions)

RECEP	TORS WITH	HIGHEST CANCE					
REC	TYPE	CANCER	CHRONIC	ACUTE	UTME	UTMN	ZONE
592	GRID	4.87E-06	2.55E-03	5.71E-02	249559	4087203	11
688	GRID	3.88E-06	1.32E-02	4.77E-02	249859	4089303	11
550	GRID	2.85E-06	1.58E-03	6.94E-02	249409	4087203	11
607	GRID	2.25E-06	7.21E-03 6.89E-03	4.46E-02	249559	4089453	11 11
648 728	GRID GRID	2.10E-06 1.91E-06	5.97E-03	4.14E-02 4.96E-02	249709 250009	4089303 4089303	11
486	GRID	1.56E-06	7.59E-04	8.60E-02	249109	4089903	11
768	GRID	1.51E-06	3.25E-03	9.38E-02	250159	4089303	11
525	GRID	1.40E-06	1.25E-03	7.65E-02	249259	4089753	11
608	GRID	1.34E-06	3.60E-03	4.49E-02	249559	4089603	$\overline{11}$
727	GRID	1.30E-06	4.13E-03	3.85E-02	250009	4089153	11
687	GRID	1.29E-06	4.15E~03	3.55E-02	249859	4089153	11
565	GRID	1.26E-06	3.66E-03	4.23E-02	249409	4089453	11
567	GRID	1.16E-06	1.60E-03	5.90E-02	249409	4089753	11
566	GRID	1.07E-06	2.43E-03	4.45E-02	249409	4089603	11
767	GRID	1.04E-06	3.05E-03 1.15E-03	3.91E-02	250159 249559	4089153 4087053	11 11
591 606	GRID	1.01E-06 9.72E-07	2.89E-03	3.98E-02 3.23E-02	249559 249559	4087033	11
808	GRID GRID	9.69E-07	1.87E-03	5.23E-02	250309	4089303	11
549	GRID	9.46E-07	1.51E-03	6.17E-02	249409	4087053	11
609	GRID	9.35E-07	1.92E-03	5.39E-02	249559	4089753	11
647	GRID	9.28E-07	2.88E-03	3.23E-02	249709	4089153	11
485	GRID	9.20E-07	1.03E-03	7.59E-02	249109	4089753	11
548	GRID	9.19E-07	4.19E-03	3.90E-02	249409	4086903	11
407	GRID	9.13E-07	5.64E-04	6.63E-02	248809	4089903	11
524	GRID	8.60E-07	1.77E-03 2.22E-03	4.68E-02	249259	4089603 4089153	11 11
807 633	GRID GRID	8.38E-07 8.37E-07	9.78E-04	3.88E-02 3.43E-02	250309 249709	4087053	11
1064	GRID	8.15E-07	3.64E-04	2.96E-02	251209	4090053	11
446	GRID	8.05E-07	8.49E-04	6.80E-02	248959	4089753	11
523	GRID	7.65E-07	2.03E-03	3.50E-02	249259	4089453	11
766	GRID	7.56E-07	2.25E-03	3.25E-02	250159	4089003	11
564	GRID	7.46E-07	2.15E-03	2.93E-02	249409	4089303	11
726	GRID	7.08E-07	2.16E-03	2.89E-02	250009	4089003	11
806	GRID	6.91E-07	2.00E-03	3.20E-02	250309	4089003	11
508	GRID	6.90E-07 6.79E-07	1.13E-03 1.04E-03	5.73E-02 3.56E-02	249259 249409	4087203 4087353	11 11
551 568	GRID GRID	6.76E-07	1.13E-03	5.62E-02	249409	4087333	11
484	GRID	6.73E-07	1.40E-03	4.52E-02	249109	4089603	11
850	GRID	6.67E-07	1.67E-03	4.43E-02	250459	4089153	11
943	GRID	6.34E-07	2.77E-04	2.98E-02	250759	4090203	11
547	GRID	6.27E-07	3.92E-03	2.63E-02	249409	4086753	11
851	GRID	6.25E-07	1.34E-03	4.70E-02	250459	4089303	11
634	GRID	6.24E-07	8.64E-04	3.42E-02	249709	4087203	11
275	GRID	6.22E-07	1.92E-02	2.87E-02	248359	4088253	11
686	GRID	6.16E-07	1.87E-03	2.84E-02	249859	4089003	11
590 483	GRID	6.08E-07	1.93E-03 1.49E-03	3.77E-02 3.74E-02	249559 249109	4086903 4089453	11 11
355	GRID GRID	5.84E-07 5.71E-07	1.70E-03	2.17E-02	248659	4088103	11
487	GRID	5.70E-07	6.23E-04	6.41E-02	249109	4090053	11
809	GRID	5.66E-07	1.07E-03	5.53E-02	250309	4089453	11
849	GRID	5.61E-07	1.54E-03	3.02E-02	250459	4089003	$\overline{11}$
522	GRID	5.42E-07	1.47E-03	2.67E-02	249259	4089303	11
445	GRID	5.21E-07	1.08E-03	4.42E-02	248959	4089603	11
646	GRID	5.17E-07	1.53E-03	2.50E-02	249709	4089003	11
				Page 1			

GRID GRID GRID GRID GRID GRID GRID GRID	5.10E-07 5.00E-07 4.94E-07 4.93E-07 4.89E-07 4.81E-07 4.75E-07 4.75E-07 4.76E-07 4.56E-07 4.56E-07 4.49E-07 4.49E-07 4.49E-07 4.49E-07 4.39E-07 4.39E-07 4.31E-07 4.31E-07 4.10E-07 4.10E-07 3.96E-07 3.96E-07 3.84E-07 3.84E-07 3.84E-07 3.84E-07 3.58E-07 3.58E-07 3.58E-07 3.58E-07 3.58E-07 3.58E-07 3.58E-07 3.45E-07 3.44E-07 3.44E-07 3.44E-07 3.44E-07	1.53E-02 1.24E-03 1.43E-03 1.35E-03 1.26E-03 1.40E-04 9.46E-04 6.97E-04 1.21E-03 1.33E-03 1.27E-03 1.37E-04 1.69E-04 1.10E-03 9.84E-04 1.11E-03 9.79E-04 1.60E-04 1.60E-04 1.70E-03 1.60E-04 1.60E-04 1.70E-03 1.70E-04	2.78E-02 3.81E-02 2.65E-02 2.77E-02 3.07E-02 2.61E-02 5.81E-02 4.47E-02 5.01E-02 3.32E-02 2.51E-02 2.57E-02 4.70E-02 3.76E-02 4.70E-02 3.35E-02 2.76E-02 3.35E-02 2.76E-02 3.35E-02 2.76E-02 3.35E-02 2.76E-02 3.35E-02 2.76E-02 3.99E-02 3.33E-02 2.71E-02 2.40E-02 2.45E-02 3.69E-02 3.67E-02 2.45E-02 2.45E-02 2.54E-02 2.54E-02 2.54E-02 2.14E-02 2.54E-02 2.54E-02 2.54E-02 2.54E-02 2.76E-02 3.08E-02 3.08E-02 3.08E-02 3.08E-02 3.08E-02 2.11E-02 2.21E-02 2.21E-02 2.45E-02 2.45E-02 2.45E-02 3.67E-02 2.45E-02 2.45E-02 2.45E-02 3.67E-02 2.45E-02 3.67E-02 2.45E-02 3.67E-02 2.45E-02 3.67E-02 3.67E-02 3.67E-02 3.67E-02 3.67E-02 3.67E-02 3.67E-02	248359 250609 250159 249559 249709 250309 248809 249559 248809 250609 250459 248859 249859 249859 249109 249109 249109 249109 249109 249109 249109 249859	4088103 4089153 4088853 4089903 4088853 4090053 4089903 4089753 4089903 4089903 40899053 40899053 4089903 4089903 4089903 408953 4089153 4089153 4089153 4089603 4089603 4089603 4089603 4089853 4089603 40896	11 11 11 11 11 11 11 11 11 11 11 11 11
GRID	3.41E-U/	8.34E-U4	3.41E-U2	248809	4089453	11
ORS WITH HI TYPE GRID GRID GRID GRID GRID GRID GRID GRID	GHEST CHRON CANCER 6.22E-07 5.71E-07 5.10E-07 3.88E-06 2.25E-06 2.91E-07 2.10E-06 1.91E-06 2.47E-07 2.46E-07 2.42E-07 2.40E-07 2.11E-07 9.19E-07 1.29E-06	CHRONIC 1.92E-02 1.70E-02 1.53E-02 1.32E-02 7.21E-03 7.21E-03 6.89E-03 5.97E-03 5.76E-03 5.58E-03 5.27E-03 4.93E-03 4.19E-03 4.15E-03	ACUTE 2.87E-02 2.17E-02 2.78E-02 4.77E-02 4.46E-02 1.91E-02 4.14E-02 4.96E-02 2.25E-02 2.22E-02 2.05E-02 1.93E-02 1.98E-02 3.90E-02	UTME 248359 248659 248359 249859 249559 248659 249709 250009 248509 248659 248809 248809 248809 249859	UTMN 4088253 4088103 4088103 4089453 4089453 4089303 408953 4088253 4088253 4088253 4088253 4088253 4088253	ZONE 11 11 11 11 11 11 11 11 11 11 11 11 11
	GRID GRID GRID GRID GRID GRID GRID GRID	GRID	GRID 5.10E-07 1.53E-02 GRID 5.00E-07 1.24E-03 GRID 4.94E-07 1.43E-03 GRID 4.94E-07 1.35E-03 GRID 4.89E-07 1.26E-03 GRID 4.89E-07 1.26E-03 GRID 4.84E-07 1.40E-03 GRID 4.81E-07 4.49E-04 GRID 4.75E-07 9.46E-04 GRID 4.75E-07 9.46E-04 GRID 4.56E-07 1.21E-03 GRID 4.56E-07 1.21E-03 GRID 4.56E-07 1.27E-03 GRID 4.50E-07 1.27E-03 GRID 4.50E-07 1.70E-04 GRID 4.49E-07 4.89E-04 GRID 4.39E-07 1.10E-03 GRID 4.39E-07 1.11E-03 GRID 4.10E-07 1.60E-04 GRID 4.09E-07 9.81E-04 GRID 4.09E-07 9.81E-04 GRID 3.96E-07 1.09E-03 GRID 3.96E-07 1.70E-04 GRID 3.84E-07 7.74E-04 GRID 3.84E-07 1.70E-04 GRID 3.58E-07 5.99E-04 GRID 3.58E-07 1.50E-03 GRID 3.58E-07 1.50E-04 GRID 3.45E-07 1.60E-04 GRID 3.61E-07 1.60E-04 GRID 3.61E-07 1.60E-04 GRID 3.61E-07 1.70E-04 GRID 3.61E-07 1.50E-04 GRID 3.61E-07 7.41E-04 GRID 3.58E-07 2.29E-03 GRID 3.58E-07 2.37E-03 GRID 3.45E-07 6.56E-04 GRID 3.45E-07 6.56E-04 GRID 3.45E-07 6.56E-04 GRID 3.45E-07 6.56E-04 GRID 3.45E-07 5.99E-04 GRID 3.45E-07 1.50E-04 GRID 3.58E-07 5.99E-04 GRID 3.58E-07 7.41E-04 GRID 3.58E-07 7.41E-04 GRID 3.58E-07 7.50E-04 GRID 3.58E-07 7.50E-04 GRID 3.45E-07 6.56E-04 GRID 3.46E-07 5.95E-03 GRID 3.46E-07 5.95E-03 GRID 3.46E-07 5.76E-03 GRID 3.46E-07 5.76E-03 GRID 3.46E-07 5.76E-03 GRID 2.47E-07 5.76E-03 GRID 2.49E-07 5.27E-03	GRID	GRID 5.10E-07 1.53E-02 2.78E-02 248359 GRID 4.94E-07 1.43E-03 2.65E-02 250159 GRID 4.94E-07 1.35E-03 2.67E-02 249559 GRID 4.93E-07 1.26E-03 3.07E-02 249559 GRID 4.89E-07 1.40E-03 2.61E-02 250309 GRID 4.81E-07 1.40E-03 2.61E-02 250309 GRID 4.75E-07 9.46E-04 4.47E-02 249559 GRID 4.75E-07 9.46E-04 4.47E-02 249559 GRID 4.75E-07 9.46E-04 4.47E-02 249559 GRID 4.75E-07 1.32E-03 3.32E-02 250609 GRID 4.75E-07 1.33E-03 2.51E-02 250009 GRID 4.56E-07 1.33E-03 2.51E-02 250009 GRID 4.56E-07 1.33E-03 2.51E-02 250009 GRID 4.49E-07 4.94E-04 5.70E-02 248859 GRID 4.49E-07 4.94E-04 5.70E-02 248959 GRID 4.39E-07 1.10E-03 3.35E-02 250609 GRID 4.39E-07 1.00E-03 3.57E-02 248959 GRID 4.39E-07 1.10E-03 3.57E-02 248959 GRID 4.39E-07 1.10E-03 3.55E-02 249109 GRID 4.31E-07 1.11E-03 2.76E-02 249109 GRID 4.10E-07 1.50E-03 2.76E-02 249109 GRID 4.10E-07 1.50E-04 2.24E-02 249259 GRID 4.10E-07 1.50E-04 2.24E-02 249259 GRID 4.10E-07 1.50E-04 2.24E-02 249259 GRID 4.10E-07 1.60E-04 3.33E-02 249109 GRID 4.09E-07 9.8E-04 3.99E-02 249259 GRID 3.96E-07 1.50E-03 2.40E-02 249359 GRID 3.96E-07 1.50E-03 2.40E-02 249409 GRID 3.96E-07 1.50E-03 2.40E-02 249409 GRID 3.96E-07 1.60E-04 3.33E-02 249109 GRID 3.96E-07 1.50E-03 2.40E-02 249409 GRID 3.86E-07 8.37E-04 3.96E-02 249409 GRID 3.58E-07 2.78E-04 3.08E-02 249409 GRID 3.58E-07 8.59E-04 3.08E-02 249409 GRID 3.58E-07 8.59E-04 3.08E-02 249409 GRID 3.58E-07 8.59E-04 3.08E-02 249459 GRID 3.58E-07 1.50E-03 2.24E-02 249459 GRID 3.58E-07 1.50E-03 2.24E-02 249459 GRID 3.58E-07 2.78E-04 3.08E-02 249459 GRID 3.58E-07 2.78E-04 3.08E-02 249459 GRID 3.58E-07 2.78E-04 3.08E-02 249459 GRID 3.58E-07 2.78E-04 2.48E-02 249459 GRID 3.58E-07 2.79E-04 2.48E-02 249459 GRID 3.58E-07 2.79E-04 2.48E-02 249459 GRID 3.58E-07 5.99E-04 3.69E-02 249459 GRID 3.58E-07 5.99E-04 3.69E-02 249859 GRID 3.49E-07 5.56E-03 1.99E-02 248859 GRID 3.49E-07 5.56E	GRID 5.00E-07 1.33E-02 2.78E-02 248359 4088103 GRID 5.00E-07 1.24E-03 3.8LE-02 250G09 4089153 GRID 4.94E-07 1.43E-03 2.65E-02 250I59 4088853 GRID 4.93E-07 1.35E-03 2.77E-02 249559 4089153 GRID 4.84E-07 1.40E-03 2.6IE-02 249559 4089153 GRID 4.84E-07 1.40E-03 2.6IE-02 250309 4088693 GRID 4.84E-07 1.40E-03 2.6IE-02 248509 4090053 GRID 4.75E-07 9.46E-04 4.7E-02 248509 40890053 GRID 4.75E-07 9.46E-04 4.7E-02 248509 40890053 GRID 4.75E-07 1.2IE-03 3.32E-02 250609 4088903 GRID 4.75E-07 1.2IE-03 3.32E-02 250609 4088903 GRID 4.56E-07 1.33E-03 2.5IE-02 250609 4088903 GRID 4.56E-07 1.33E-03 2.5IE-02 248509 4090053 GRID 4.56E-07 1.37E-03 2.35E-02 250609 4088053 GRID 4.56E-07 1.37E-03 2.35E-02 250609 4088053 GRID 4.46E-07 7.74E-04 2.67E-02 248599 4090053 GRID 4.45E-07 7.74E-04 2.67E-02 248599 4090053 GRID 4.45E-07 7.74E-04 2.57E-02 248599 4089003 GRID 4.39E-07 9.88E-04 4.70E-02 248599 4089003 GRID 4.39E-07 1.10E-03 3.57E-02 249259 4099053 GRID 4.39E-07 1.10E-03 3.57E-02 249259 4089903 GRID 4.39E-07 1.10E-03 3.57E-02 249109 4088203 GRID 4.39E-07 1.60E-04 3.33E-02 250609 4088303 GRID 4.1E-07 7.5E-04 4.08E-02 250609 4088303 GRID 4.10E-07 1.60E-04 3.33E-02 250609 4088903 GRID 4.10E-07 1.60E-04 3.33E-02 250609 40889303 GRID 4.10E-07 1.60E-04 3.33E-02 250609 40889303 GRID 4.00E-07 9.81E-04 2.7EE-02 249599 4089503 GRID 4.00E-07 9.81E-04 2.7EE-02 249599 4089503 GRID 4.00E-07 9.81E-04 2.7EE-02 249599 4089503 GRID 3.9EE-07 1.09E-03 2.40E-02 250609 40889303 GRID 4.00E-07 9.81E-04 2.7EE-02 249599 4089503 GRID 3.9EE-07 1.09E-03 2.40E-02 250609 40889303 GRID 3.9EE-07 1.09E-03 2.40E-02 250609 4088853 GRID 3.9EE-07 1.09E-03 2.40E-02 250609 4088503 GRID 3.9EE-07 1.09E-03 2.40E-02 250609 4088503 GRID 3.9EE-07 1.09E-03 2.40E-02 249859 408903 GRID 3.9EE-07 1.09E-03 2.40E-02 249859 408903 GRID 3.9EE-07 1.09E-03 2.40E-02 249859 408903 GRID 3.6EE-07 1.5EE-04 2.9EE-02 249859 408903 GRID 3.6EE-07 1.5EE-04 2.9EE-02 249859 408903 GRID 3.6EE-07 1.5EE-04 2.9EE-02 249859 408903 GRID 3.6EE-07 5.7EE-03 2.2EE-02 249599 4089053 GRID 3.4EE-07 5.7EE-03 2.2EE-

727	CDTD	1 20= 00		p_PMI.txt	250000	4000153	11
727 231	GRID GRID	1.30E-06 1.83E-07	4.13E-03 3.95E-03	3.85E-02 1.99E-02	250009 248209	4089153 4088103	11 11
547	GRID	6.27E-07	3.92E-03	2.63E-02	249409	4086753	11
565	GRID	1.26E-06	3.66E-03	4.23E-02	249409	4089453	11
276	GRID	1.82E-07	3.64E-03	2.00E-02	248359	4088403	$\overline{11}$
608	GRID	1.34E-06	3.60E-03	4.49E-02	249559	4089603	11
768	GRID	1.51E-06	3.25E-03	9.38E-02	250159	4089303	11
434	GRID	1.84E-07	3.10E-03	2.12E-02	248959	4087953	11
767	GRID	1.04E-06	3.05E-03 2.93E-03	3.91E-02 2.10E-02	250159	4089153 4087803	11
393 606	GRID GRID	1.79E-07 9.72E-07	2.89E-03	3.23E-02	248809 249559	4087803	11 11
647	GRID	9.28E-07	2.88E-03	3.23E-02	249709	4089153	11
273	GRID	1.59E-07	2.84E-03	2.36E-02	248359	4087953	$\overline{11}$
189	GRID	1.43E-07	2.65E-03	2.04E-02	248059	4088253	11
353	GRID	1.68E-07	2.64E-03	1.94E-02	248659	4087803	11
433	GRID	1.76E-07	2.58E-03	2.20E-02	248959	4087803	11
592	GRID	4.87E-06	2.55E-03 2.53E-03	5.71E-02 1.85E-02	249559	4087203 4088403	11 11
233 435	GRID GRID	1.46E-07 1.62E-07	2.33E-03 2.44E-03	2.01E-02	248209 248959	4088103	11
566	GRID	1.07E-06	2.43E-03	4.45E-02	249409	4089603	11
507	GRID	3.58E-07	2.37E-03	2.91E-02	249259	4086603	$\bar{1}\bar{1}$
546	GRID	3.67E-07	2.29E-03	2.20E-02	249409	4086603	11
766	GRID	7.56E-07	2.25E-03	3.25E-02	250159	4089003	11
807	GRID	8.38E-07	2.22E-03	3.88E-02	250309	4089153	11
188 726	GRID GRID	1.30E-07 7.08E-07	2.20E-03 2.16E-03	1.76E-02 2.89E-02	248059 250009	4088103 4089003	11 11
564	GRID	7.46E-07	2.15E-03	2.93E-02	249409	4089303	11
467	GRID	3.10E-07	2.11E-03	2.91E-02	249109	4086603	11
315	GRID	1.48E-07	2.10E-03	1.80E-02	248509	4087803	11
523	GRID	7.65E-07	2.03E-03	3.50E-02	249259	4089453	11
806	GRID	6.91E-07	2.00E-03	3.20E-02	250309	4089003	11
589 590	GRID GRID	3.39E-07 6.08E-07	1.95E-03 1.93E-03	2.00E-02 3.77E-02	249559 249559	4086603 4086903	11 11
609	GRID	9.35E-07	1.92E-03	5.39E-02	249559	4089753	11
310	GRID	2.74E-07	1.91E-03	2.42E-02	248509	4087053	$\overline{1}\overline{1}$
473	GRID	1.48E-07	1.89E-03	2.10E~02	249109	4087953	11
808	GRID	9.69E-07	1.87E-03	5.23E-02	250309	4089303	11
686	GRID	6.16E-07	1.87E-03	2.84E-02	249859	4089003	11
309 472	GRID GRID	2.63E-07 1.62E-07	1.87E-03 1.84E-03	2.78E-02 2.20E-02	248509 249109	4086903 4087803	11 11
317	GRID	1.02E-07 1.37E-07	1.81E-03	2.02E-02 2.02E-02	248509	4088403	11
524	GRID	8.60E-07	1.77E-03	4.68E-02	249259	4089603	$\overline{1}\overline{1}$
396	GRID	1.41E-07	1.75E-03	2.01E-02	248809	4088253	11
392	GRID	1.62E-07	1.74E-03	2.31E-02	248809	4087653	11
432	GRID	1.66E-07	1.70E-03	2.25E-02	248959 247909	4087653	11
146 190	GRID GRID	1.12E-07 1.18E-07	1.70E-03 1.68E-03	1.83E-02 1.75E-02	247909	4088253 4088403	11 11
850	GRID	6.67E-07	1.67E-03	4.43E-02	250459	4089153	11
389	GRID	3.03E-07	1.67E-03	2.65E-02	248809	4087203	$\overline{11}$
429	GRID	3.42E-07	1.64E-03	3.07E-02	248959	4087203	11
428	GRID	2.44E-07	1.64E-03	2.66E-02	248959	4086603	11
567	GRID	1.16E-06	1.60E-03	5.90E-02	249409	4089753	11
349 471	GRID GRID	2.67E-07 1.80E~07	1.60E-03 1.60E-03	2.40E-02 2.41E-02	248659 249109	4087203 4087653	11 11
550	GRID	2.85E-06	1.58E-03	6.94E-02	249409	4087203	11
230	GRID	1.18E-07	1.57E-03	1.88E-02	248209	4087953	$\bar{1}\bar{1}$
849	GRID	5.61E-07	1.54E-03	3.02E-02	250459	4089003	11
646	GRID	5.17E-07	1.53E-03	2.50E-02	249709	4089003	11
631	GRID	2.98E-07	1.52E-03	1.97E-02	249709 249409	4086603	11
549 483	GRID GRID	9.46E-07 5.84E-07	1.51E-03 1.49E-03	6.17E-02 3.74E-02	249409 249109	4087053 4089453	11 11
272	GRID	1.24E-07	1.49E-03	1.96E-02	248359	4087803	11
234	GRID	1.23E-07	1.49E-03	2.03E-02	248209	4088553	$\overline{11}$
				Dago 2			

522 352 468 765 545 145 484 805 474 588 311 314 605 851 506 725 267 431 391 511 277	GRID GRID GRID GRID GRID GRID GRID GRID	5.42E-07 1.49E-07 4.31E-07 4.94E-07 2.36E-07 1.03E-07 6.73E-07 4.84E-07 1.29E-07 2.38E-07 2.14E-07 1.39E-07 4.93E-07 4.93E-07 1.96E-07 1.96E-07 1.96E-07 1.80E-07 1.80E-07	1.47E-03 1.46E-03 1.44E-03 1.42E-03 1.42E-03 1.40E-03 1.40E-03 1.39E-03 1.37E-03 1.36E-03 1.34E-03 1.34E-03 1.34E-03 1.31E-03 1.30E-03 1.29E-03 1.29E-03	ep_PMI.txt 2.67E-02 2.11E-02 3.35E-02 2.65E-02 1.84E-02 1.73E-02 4.52E-02 2.61E-02 2.10E-02 1.72E-02 2.23E-02 1.92E-02 2.77E-02 4.70E-02 2.18E-02 2.18E-02 2.28E-02 2.37E-02 2.37E-02 2.37E-02 2.55E-02 2.39E-02 2.56E-02 1.82E-02	249259 248659 249109 250159 249409 247909 249109 250309 249109 249559 248509 248509 249559 250459 249259 248359 248359 248809 248359	4089303 4087653 4087203 4088853 4086453 4088103 4088853 4088103 4086453 4087203 4087653 4089153 4089303 4086453 4087803 4087803 4087503 4087503 4087653 4087503 4087653	11 11 11 11 11 11 11 11 11 11 11 11 11
				-			
REC 768 486 525 485 546 407 487 549 567 408 592 447 568 809 528 406 728 809 528 407 528 528 528 528 528 528 528 528 528 528	TYPE GRID GRID GRID GRID GRID GRID GRID GRID	HIGHEST ACUTE CANCER 1.51E-06 1.56E-06 1.40E-06 9.20E-07 2.85E-06 8.05E-07 9.13E-07 5.70E-07 9.46E-07 1.16E-06 4.81E-07 6.90E-07 4.87E-06 4.49E-07 6.76E-07 5.66E-07 9.35E-07 4.41E-07 9.69E-07 4.73E-07 1.91E-06 3.63E-07 4.45E-07 4.45E-07	CHRONIC 3.25E-03 7.59E-04 1.25E-03 1.03E-03 1.58E-03 8.49E-04 5.64E-04 6.23E-04 1.51E-03 1.60E-03 4.49E-04 1.13E-03 2.55E-03 4.94E-04 1.13E-03 7.51E-04 1.87E-03 6.97E-04 5.97E-03 7.44E-04 1.32E-02 1.34E-03 4.89E-04 1.77E-03	ACUTE 9.38E-02 8.60E-02 7.65E-02 6.94E-02 6.94E-02 6.41E-02 6.41E-02 5.90E-02 5.73E-02 5.71E-02 5.70E-02 5.62E-02 5.39E-02 5.24E-02 5.23E-02 5.24E-02 4.96E-02 4.77E-02 4.70E-02 4.68E-02 4.68E-02 4.68E-02	UTME 250159 249109 249259 249409 248809 249409 249409 249409 249409 249859 249259 249259 249259 249259 249259 249259 249259 249259 249259 249259 249259 249259 249259	UTMN 4089303 4089903 4089753 4089753 4089753 4089753 4089753 4089753 4089753 4089753 4089903 4089633 4089753 4089753 4089753 4089753 4089753 4089753 4089753 4089753 4089753 4089753 4089753 4089753 4089753 4089753 4089753	ZONE 11 11 11 11 11 11 11 11 11 11 11 11 11
488 448 484 608 610 607 566 810 850 445 409 565	GRID GRID GRID GRID GRID GRID GRID GRID	3.04E-07 3.06E-07 6.73E-07 1.34E-06 4.75E-07 2.25E-06 1.07E-06 3.06E-07 6.67E-07 5.21E-07 2.79E-07	5.34E-04 4.41E-04 1.40E-03 3.60E-03 9.46E-04 7.21E-03 2.43E-03 5.76E-04 1.67E-03 1.08E-03 3.68E-04 3.66E-03	4.65E-02 4.63E-02 4.52E-02 4.49E-02 4.47E-02 4.46E-02 4.45E-02 4.44E-02 4.43E-02 4.38E-02 4.23E-02	249109 248959 249109 249559 249559 249559 249409 250309 250459 248809 249409	4090203 4090203 4089603 4089903 4089453 4089603 4089153 4089603 4090203 4089453	11 11 11 11 11 11 11 11 11 11

C 4 0	an	2 45- 07		PMI.txt	240700	4000003	11
649	GRID	3.45E-07	6.56E-04	4.23E-02	249709 249859	4089903 4089903	11 11
689 527	GRID	2.67E-07 2.76E-07	4.56E-04 5.68E-04	4.20E-02 4.17E-02	249859	4090203	11
368	GRID	3.46E-07	3.99E-04	4.17E-02 4.15E-02	248659	4090053	11
648	GRID GRID	2.10E-06	6.89E-03	4.14E-02	249709	4089303	11
984	GRID	3.89E-07	1.70E-04	4.14E-02 4.11E-02	250909	4090353	11
894	GRID	4.39E-07	9.88E-04	4.08E-02	250609	4089303	$\frac{1}{1}$
729	GRID	2.24E-07	3.75E-04	4.08E-02	250009	4089903	$\frac{1}{1}$
611	GRID	2.92E-07	5.79E-04	4.02E-02	249559	4090053	11
509	GRID	4.11E-07	9.79E-04	3.99E-02	249259	4087353	11
591	GRID	1.01E-06	1.15E-03	3.98E-02	249559	4087053	11
570	GRID	2.30E-07	4.80E-04	3.97E-02	249409	4090203	11
405	GRID	3.86E-07	8.37E-04	3.96E-02	248809	4089603	$\overline{11}$
650	GRID	2.31E-07	4.35E-04	3.94E-02	249709	4090053	$\overline{1}\overline{1}$
1023	GRID	2.18E-07	1.80E-04	3.94E-02	251059	4089753	$\overline{11}$
767	GRID	1.04E-06	3.05E-03	3.91E-02	250159	4089153	$\overline{11}$
548	GRID	9.19E-07	4.19E-03	3.90E-02	249409	4086903	11
807	GRID	8.38E-07	2.22E-03	3.88E-02	250309	4089153	11
853	GRID	2.43E-07	4.44E-04	3.86E-02	250459	4089603	11
727	GRID	1.30E-06	4.13E-03	3.85E-02	250009	4089153	11
895	GRID	2.92E-07	6.21E-04	3.82E-02	250609	4089453	11
811	GRID	2.39E-07	4.87E-04	3.82E-02	250309	4089753	11
893	GRID	5.00E-07	1.24E-03	3.81E-02	250609	4089153	11
983	GRID	2.00E-07	2.04E-04	3.81E-02	250909	4089753	11
612	GRID	2.09E-07	3.94E-04	3.79E-02	249559	4090203	11
590	GRID	6.08E-07	1.93E-03	3.77E-02	249559	4086903	11
483	GRID	5.84E-07	1.49E-03	3.74E-02	249109	4089453	11
369	GRID	2.49E-07	3.28E-04	3.74E-02	248659	4090203	11
769	GRID	2.05E-07	3.58E-04	3.72E-02	250159	4089903	11
410	GRID	2.13E-07	3.31E-04	3.72E-02	248809	4090353	11
852	GRID	3.61E-07	7.41E-04	3.69E-02	250459	4089453	11
449	GRID	2.21E-07	3.93E-04	3.68E-02	248959	4090353 4089753	11 11
366 327	GRID	3.58E-07 3.05E-07	5.99E-04 4.31E-04	3.67E-02 3.64E-02	248659 248509	4089903	11
651	GRID GRID	1.80E-07	3.04E-04	3.63E-02	249709	4090203	11
941	GRID	1.99E-07	2.19E-04	3.59E-02	250759	4089903	11
690	GRID	1.87E-07	3.13E-04	3.58E-02	249859	4090053	$\dot{1}\dot{1}$
444	GRID	4.39E-07	1.10E-03	3.57E-02	248959	4089453	11
489	GRID	2.10E-07	4.26E-04	3.57E-02	249109	4090353	$\overline{1}\overline{1}$
854	GRID	2.03E-07	3.74E-04	3.57E-02	250459	4089753	$\overline{11}$
551	GRID	6.79E-07	1.04E-03	3.56E-02	249409	4087353	11
982	GRID	1.81E-07	2.64E-04	3.56E-02	250909	4089603	11
687	GRID	1.29E-06	4.15E-03	3.55E-02	249859	4089153	11
938	GRID	2.44E-07	4.94E-04	3.54E-02	250759	4089453	11
730	GRID	1.65E-07	2.61E-04	3.54E-02	250009	4090053	11
523	GRID	7.65E-07	2.03E-03	3.50E-02	249259	4089453	11
942	GRID	3.09E-07	2.10E-04	3.50E-02	250759	4090053	11
939	GRID	1.87E-07	3.12E-04	3.46E-02	250759	4089603	11
937	GRID	3.31E-07	7.30E-04	3.44E-02	250759	4089303	11
633	GRID	8.37E-07	9.78E-04	3.43E-02	249709	4087053	11
634	GRID	6.24E-07	8.64E-04	3.42E-02	249709 250609	4087203	11
898	GRID	1.82E-07	2.70E-04	3.42E-02		4089903	11
404 691	GRID	3.41E-07 1.48E-07	8.34E-04 2.21E-04	3.41E-02 3.38E-02	248809 249859	4089453 4090203	11 11
468	GRID GRID	4.31E-07	1.44E-03	3.35E-02	249109	4087203	11
365	GRID	3.10E-07	6.79E-04	3.34E-02	248659	4089603	11
981	GRID	2.11E-07	3.95E-04	3.34E-02	250909	4089453	11
936	GRID	3.92E-07	9.54E-04	3.33E-02	250759	4089153	$\overline{11}$
812	GRID	1.82E-07	3.14E-04	3.33E-02	250309	4089903	11
1063	GRID	4.10E-07	1.60E-04	3.33E-02	251209	4089903	11
892	GRID	4.66E-07	1.21E-03	3.32E-02	250609	4089003	$\overline{11}$
731	GRID	1.38E~07	1.81E-04	3.32E-02	250009	4090203	$\overline{1}\overline{1}$
		= -			-	_	

EXCEPTION REPORT

(there have been no changes or exceptions)

RECEPT	TORS WITH	HIGHEST CANCE	R RISK				
REC	TYPE	CANCER	CHRONIC	ACUTE	UTME	UTMN	ZONE
592	GRID	4.98E-06	2.55E-03	5.41E-02	249559	4087203	11
688	GRID	3.76E-06	1.27E-02	4.45E-02	249859	4089303	11
550	GRID	3.00E-06	1.62E-03	6.56E-02	249409	4087203	11
607	GRID	2.28E-06	7.29E-03	4.25E-02	249559	4089453	11
648	GRID	2.07E-06	6.77E-03	4.06E-02	249709	4089303	$\overline{11}$
728	GRID	1.99E-06	6.23E-03	4.91E-02	250009	4089303	$\overline{1}\overline{1}$
486	GRID	1.63E-06	8.91E-04	8.50E-02	249109	4089903	$\overline{1}\overline{1}$
768	GRID	1.52E-06	3.40E-03	8.88E-02	250159	4089303	11
608	GRID	1.42E-06	3.84E-03	4.53E-02	249559	4089603	$\frac{11}{11}$
525	GRID	1.39E-06	1.44E-03	7.75E-02	249259	4089753	$\frac{11}{11}$
565	GRID	1.33E-06	3.94E-03	4.09E-02	249409	4089453	11
727	GRID	1.26E-06	4.03E-03	3.67E-02	250009	4089153	11
567	GRID	1.23E-06	1.76E-03	6.03E-02	249409	4089753	11
687	GRID	1.17E-06	3.71E-03	3.44E-02	249859	4089153	11
767	GRID	1.10E-06	3.29E-03	4.26E-02	250159	4089153	11
566	GRID	1.10E-06	2.60E-03	4.20E-02 4.47E-02	249409	4089603	11
808	GRID	1.01E-06	1.95E-03	5.23E-02	250309	4089303	11
606		9.94E-07	2.98E-03	3.28E-02		4089303	
	GRID	9.86E-07	2.96E-03 2.02E-03		249559		11
609 407	GRID		6.02E-03	5.46E-02	249559	4089753	11
485	GRID	9.67E-07		6.66E-02	248809	4089903	11
	GRID	9.46E-07	1.11E-03	7.34E-02	249109	4089753	11
591	GRID	9.01E-07	1.03E-03	3.63E-02	249559	4087053	11
807	GRID	8.91E-07	2.44E-03	3.84E-02	250309	4089153	11
1064	GRID	8.73E-07	3.97E-04	2.94E-02	251209	4090053	11
633	GRID	8.72E-07	9.26E-04	3.27E-02	249709	4087053	11
548	GRID	8.59E-07	4.22E-03	3.66E-02	249409	4086903	11
647	GRID	8.49E-07	2.61E-03	2.98E-02	249709	4089153	11
524 523	GRID	8.37E-07	1.75E-03	4.71E-02	249259	4089603	11
549	GRID	8.14E-07	2.24E-03	3.38E-02	249259	4089453	11
446	GRID	7.90E-07	1.32E-03	5.78E-02	249409	4087053	11
564	GRID	7.84E-07	8.47E-04 2.28E-03	6.54E-02	248959	4089753	11
806	GRID	7.76E-07 7.35E-07		3.00E-02 3.23E-02	249409	4089303	11
766	GRID		2.18E-03		250309	4089003	11
508	GRID	7.34E-07	2.20E-03	3.48E-02	250159	4089003	11
551	GRID	7.20E-07	1.10E-03	5.52E-02	249259	4087203	11
	GRID	7.13E-07	1.03E-03	3.89E-02	249409	4087353	11
850	GRID	7.09E~07	1.79E-03	4.32E-02	250459	4089153	11
568	GRID	6.89E-07	1.18E-03	5.74E-02	249409	4089903	11
851 275	GRID	6.56E-07	1.41E-03	4.71E-02	250459	4089303	11
943	GRID	6.53E-07	2.03E-02 2.91E-04	1.65E-02	248359	4088253	11
	GRID	6.48E-07		3.03E-02	250759	4090203	11
726	GRID	6.41E-07	1.95E-03	2.82E-02	250009	4089003	11
484 483	GRID	6.36E-07 6.25E-07	1.35E-03 1.68E-03	4.46E-02 3.47E-02	249109	4089603	11
	GRID		1.00E-U3	-	249109	4089453	11
849 634	GRID	6.17E-07	1.75E-03	2.90E-02	250459	4089003	11
547	GRID	6.14E-07	8.43E-04	3.34E-02	249709	4087203	11
	GRID	6.02E-07	3.96E-03	2.50E-02	249409	4086753	11
487	GRID	5.98E-07	6.97E-04	6.37E-02	249109	4090053	11
590 355	GRID	5.91E-07	1.94E-03	3.64E-02	249559	4086903	11
	GRID	5.87E-07	1.77E-02	1.98E-02	248659	4088103	11
522	GRID	5.64E-07	1.57E-03	2.65E-02	249259	4089303	11
686	GRID	5.54E-07	1.67E-03	2.63E-02	249859	4089003	11
809 893	GRID	5.53E~07	1.04E-03	5.55E-02	250309	4089453	11
408	GRID	5.28E-07	1.30E-03 5.27E-04	3.63E-02	250609	4089153	11
400	GRID	5.17E-07	J. 27E-U4	5.47E-02	248809	4090053	11
				Page 1			

447 892 610 445 274 367 444 673 805 406 526 848 646 632 605 468 482 891 509 935 408 935 408 935 409 529 409 569 409 569 366 897 898 899 899 899 899 899 899 899 899	GRID GRID GRID GRID GRID GRID GRID GRID	5.13E-07 5.10E-07 5.08E-07 5.02E-07 5.02E-07 4.80E-07 4.69E-07 4.69E-07 4.67E-07 4.67E-07 4.62E-07 4.59E-07 4.51E-07 4.51E-07 4.51E-07 4.15E-07 4.15E-07 4.15E-07 4.15E-07 3.88E-07 3.85E-07	5.90E-04 1.36E-03 1.06E-03 1.06E-03 1.50E-02 4.93E-04 1.26E-03 7.67E-04 1.37E-03 1.37E-03 1.37E-03 1.25E-03 1.25E-03 1.25E-03 1.24E-03 1.21E-03 1.24E-03 1.24E-03 1.24E-03 1.24E-04 1.06E-04 1.06E-04 1.17E-03 1.04E-04 1.50E-04	PMI.txt 6.12E-02 3.32E-02 4.54E-02 4.17E-02 1.72E-02 4.55E-02 3.26E-02 2.74E-02 2.56E-02 4.77E-02 5.46E-02 2.35E-02 3.15E-02 3.95E-02 2.60E-02 2.40E-02 2.40E-02 4.21E-02 3.27E-02 2.39E-02 3.54E-02 2.39E-02 2.39E-02 2.39E-02 2.39E-02 2.39E-02 3.34E-02 2.77E-02 2.97E-02 2.97E-02 2.97E-02 3.34E-02 3.58E-02 2.77E-02 2.98E-02 3.58E-02	248959 250609 249559 248959 248859 248859 249859 250309 248809 249259 250459 249709 249709 249109 250609 249109 250759 249859 250759 249809 250759 248809 251359 249409 248809 251359 248859 249259 248859 249259 248859 249259 248859 249259 248859 249259 248859 249259 248859 249259 248859 249259 248859 249259 248859 249259 250759 248859 249259 250759 248859 250759 250759	4090053 4089003 4089903 4089603 4089903 4089453 4089753 4088853 4089003 4086903 40889153 4089303 4088853 4089303 4088853 4089303 4089903 4089903 4089153 4089153 408953 408953 408953 4089603	
RECEPT REC 275 355 274 688 607 354 648 728 394 395 356 232 316 548 231	TORS WITH TYPE GRID GRID GRID GRID GRID GRID GRID GRID	HIGHEST CHRON CANCER 6.53E-07 5.87E-07 5.02E-07 3.76E-06 2.28E-06 2.80E-07 2.07E-06 1.99E-06 2.52E-07 2.45E-07 2.32E-07 2.18E-07 2.21E-07 8.59E-07 1.90E-07	CHRONIC 2.03E-02 1.77E-02 1.50E-02 1.27E-02 7.29E-03 6.85E-03 6.77E-03 6.23E-03 5.70E-03 5.63E-03 5.11E-03 4.85E-03 4.22E-03 4.20E-03	ACUTE 1.65E-02 1.98E-02 1.72E-02 4.45E-02 4.25E-02 1.88E-02 4.06E-02 4.91E-02 2.04E-02 1.99E-02 1.99E-02 1.35E-02 2.12E-02 3.66E-02 1.45E-02 Page 2	UTME 248359 248659 248359 249859 249559 248659 249709 250009 248809 248809 248809 248209 248209 248209	UTMN 4088253 4088103 4088103 4089303 4089453 4089303 4089303 4087953 4088253 4088253 4088253 4086903 4088103	ZONE 11 11 11 11 11 11 11 11 11 11 11 11 11

			_				
727 276 547	GRID GRID GRID	1.26E-06 1.94E-07 6.02E-07	4.03E-03 4.02E-03 3.96E-03	p_PMI.txt 3.67E-02 1.60E-02 2.50E-02	250009 248359 249409	4089153 4088403 4086753	11 11 11
565	GRID	1.33E-06	3.94E-03	4.09E-02	249409	4089453	11
608	GRID	1.42E-06	3.84E-03	4.53E-02	249559	4089603	11
687 434	GRID GRID	1.17E-06 1.91E-07	3.71E-03 3.48E-03	3.44E-02 2.14E-02	249859 248959	4089153 4087953 4089303	11 11 11
768 767 606	GRID GRID GRID	1.52E-06 1.10E-06 9.94E-07	3.40E-03 3.29E-03 2.98E-03	8.88E-02 4.26E-02 3.28E-02	250159 250159 249559	4089153 4089303	11 11 11
233	GRID	1.60E-07	2.87E-03	1.41E-02	248209	4088403	11
393	GRID	1.77E-07	2.78E-03	1.97E-02	248809	4087803	11
433	GRID	1.83E-07	2.78E-03	2.13E-02	248959	4087803	11
189	GRID	1.47E-07	2.67E-03	1.30E-02	248059	4088253	11
647	GRID	8.49E-07	2.61E-03	2.98E-02	249709	4089153	11
566	GRID	1.10E-06	2.60E-03	4.47E-02	249409	4089603	11
592	GRID	4.98E-06	2.55E-03	5.41E-02	249559	4087203	11
435	GRID	1.59E-07	2.55E-03	2.15E-02	248959	4088103	11
807	GRID	8.91E-07	2.44E-03	3.84E-02	250309	4089153	11
188	GRID	1.35E-07	2.34E-03	1.31E-02	248059	4088103	11
353	GRID	1.60E-07	2.34E-03	1.85E-02	248659	4087803	11
564	GRID	7.76E-07	2.28E-03	3.00E-02	249409	4089303	11
317	GRID	1.47E-07	2.26E-03	1.79E-02	248509	4088403	11
523	GRID	8.14E-07	2.24E-03	3.38E-02	249259	4089453	11
546	GRID	3.45E-07	2.23E-03	2.11E-02	249409	4086603	11
507	GRID	3.16E-07	2.21E-03	2.80E-02	249259	4086603	11
766	GRID	7.34E-07	2.20E-03	3.48E-02	250159	4089003	11
806	GRID	7.35E-07	2.18E-03	3.23E-02	250309	4089003	11
472	GRID	1.66E-07	2.16E-03	2.15E-02	249109	4087803	11
473	GRID	1.47E-07	2.04E-03	2.00E-02	249109	4087953	11
609	GRID	9.86E-07	2.02E-03	5.46E-02	249559	4089753	11
589	GRID	3.33E-07	2.00E-03	1.94E-02	249559	4086603	11
273	GRID	1.34E-07	1.97E-03	1.66E-02	248359	4087953	11
808	GRID	1.01E-06	1.95E-03	5.23E-02	250309	4089303	11
726	GRID	6.41E-07	1.95E-03	2.82E-02	250009	4089003	11
309	GRID	2.72E-07	1.95E-03	1.97E-02	248509	4086903	11
590	GRID	5.91E-07	1.94E-03	3.64E-02	249559	4086903	11
310	GRID	2.76E-07	1.91E-03	1.87E-02	248509	4087053	11
315	GRID	1.41E-07	1.89E-03	1.80E-02	248509	4087803	11
467	GRID	2.60E-07	1.85E-03	2.54E-02	249109	4086603	11
389	GRID	3.22E-07	1.80E-03	2.53E-02	248809	4087203	11
850	GRID	7.09E-07	1.79E-03	4.32E-02	250459	4089153	11
190	GRID	1.27E-07	1.78E-03	1.26E-02	248059	4088403	11
567	GRID	1.23E-06	1.76E-03	6.03E-02	249409	4089753	11
524	GRID	8.37E-07	1.75E-03	4.71E-02	249259	4089603	11
849	GRID	6.17E-07	1.75E-03	2.90E-02	250459	4089003	11
146	GRID	1.18E-07	1.73E-03	1.17E-02	247909	4088253	11
429	GRID	3.62E-07	1.71E-03	2.98E-02	248959	4087203	11
471	GRID	1.84E-07	1.70E-03	2.38E-02	249109	4087653	11
483	GRID	6.25E-07	1.68E-03	3.47E-02	249109	4089453	11
349	GRID	2.79E-07	1.67E-03	2.19E-02	248659	4087203	11
686	GRID	5.54E-07	1.67E-03	2.63E-02	249859	4089003	11
432 550	GRID GRID GRID	1.71E-07 3.00E-06	1.64E-03 1.62E-03	2.18E-02 6.56E-02	248959 248959 249409	4087653 4087203	11 11
631	GRID	2.97E-07	1.61E-03	2.03E-02	249709	4086603	11
396	GRID	1.31E-07	1.61E-03	1.93E-02	248809	4088253	11
234	GRID	1.30E-07	1.57E-03	1.38E-02	248209	4088553	11
522	GRID	5.64E-07	1.57E-03	2.65E-02	249259	4089303	11
392	GRID	1.61E-07	1.56E-03	2.09E-02	248809	4087653	11
145	GRID	1.10E-07	1.55E-03	1.17E-02	247909	4088103	11
512	GRID	1.47E-07	1.52E-03	2.35E-02	249259	4087803	11
511	GRID	1.82E-07	1.51E-03	2.63E-02	249259	4087653	11
230	GRID	1.15E-07	1.50E-03	1.40E-02	248209	4087953	11

		D	ep_PMI.txt			
277 GRID 474 GRID 468 GRID 525 GRID 851 GRID 311 GRID 805 GRID 646 GRID 428 GRID 513 GRID 513 GRID 513 GRID 514 GRID 554 GRID 545 GRID 546 GRID 547 GRID 548 GRID 549 GRID 540 GRID 541 GRID 542 GRID 543 GRID 544 GRID 545 GRID 546 GRID 547 GRID 630 GRID	1.31E-07 1.27E-07 4.51E-07 1.39E-06 6.56E-07 2.19E-07 4.69E-07 1.98E-07 1.25E-07 1.46E-07 4.67E-07 6.36E-07 2.25E-07 7.90E-07 4.51E-07 2.14E-07 1.95E-07 5.28E-07 1.35E-07	1.46E-03 1.45E-03 1.44E-03 1.44E-03 1.41E-03 1.47E-03 1.37E-03 1.37E-03 1.36E-03 1.35E-03 1.35E-03 1.35E-03 1.35E-03 1.35E-03 1.31E-03 1.31E-03 1.31E-03 1.31E-03 1.31E-03 1.31E-03	1.57E-02 2.00E-02 3.27E-02 7.75E-02 4.71E-02 2.02E-02 2.56E-02 2.36E-02 2.36E-02 3.32E-02 2.00E-02 1.94E-02 2.27E-02 4.46E-02 1.67E-02 5.78E-02 2.77E-02 1.86E-02 1.69E-02 3.63E-02 1.81E-02 1.64E-02	248359 249109 249109 249259 250459 248509 250309 248709 248959 250609 249259 249659 249109 24959 249409 24959 249409 24959 249409 24959 249409 248359 250609 248709	4088553 4088103 4087203 4089753 4089303 4087203 4088853 40889003 4086603 4087953 4087653 4088453 4086453 4086453 4086453 4087053 4087053 4087053 4087053 4087053 4087053 4087053 4087053 4087053 4087053 4087053 4087053	11 11 11 11 11 11 11 11 11 11 11 11 11
768 GRID 486 GRID 525 GRID 485 GRID 407 GRID 550 GRID 446 GRID 447 GRID 567 GRID 549 GRID 568 GRID 508 GRID 408 GRID 609 GRID 526 GRID	1.52E-06 1.63E-06 1.39E-06 9.46E-07 9.67E-07 3.00E-06 7.84E-07 5.98E-07 1.23E-06 7.90E-07 6.89E-07 5.53E-07 7.20E-07 5.17E-07 9.86E-07 4.67E-07	3.40E-03 8.91E-04 1.44E-03 1.11E-03 6.02E-04 1.62E-03 8.47E-04 6.97E-04 1.76E-03 1.32E-03 1.18E-03 1.10E-03 5.27E-04 2.02E-03 7.89E-04	8.88E-02 8.50E-02 7.75E-02 7.34E-02 6.66E-02 6.56E-02 6.54E-02 6.37E-02 6.12E-02 6.03E-02 5.78E-02 5.74E-02 5.55E-02 5.47E-02 5.46E-02	250159 249109 249259 249109 248809 249409 248959 249109 248959 249409 249409 250309 249259 248809 249259	4089303 4089903 4089753 4089753 4089753 4089753 4090053 4089753 4089903 4089453 4089203 4089753 4089753 4090053	11 11 11 11 11 11 11 11 11 11 11 11 11
526 GRID 592 GRID 808 GRID 728 GRID 569 GRID 406 GRID 524 GRID 851 GRID 488 GRID 448 GRID 610 GRID 608 GRID 608 GRID 810 GRID 608 GRID 810 GRID 608 GRID 810 GRID 608 GRID 810 GRID 608 GRID 608 GRID 609 GRID	4.6/E-0/ 4.98E-06 1.01E-06 1.99E-06 3.62E-07 4.67E-07 8.37E-07 3.32E-07 3.36E-07 4.80E-07 5.08E-07 1.42E-06 2.92E-07 1.10E-06 6.36E-07 3.76E-06 3.21E-07	7.89E-04 2.55E-03 1.95E-03 6.23E-03 7.77E-04 6.67E-04 1.75E-03 1.41E-03 5.65E-04 4.95E-04 4.93E-04 1.06E-03 3.84E-03 5.30E-04 2.60E-03 1.35E-03 1.27E-02 4.37E-04	5.46E-02 5.41E-02 5.23E-02 4.91E-02 4.82E-02 4.77E-02 4.71E-02 4.71E-02 4.70E-02 4.63E-02 4.55E-02 4.54E-02 4.50E-02 4.47E-02 4.46E-02 4.45E-02 4.45E-02	249259 249559 250309 250009 249409 248809 249259 250459 249109 248659 249559 249559 249409 249409 249859 249859	4090053 4087203 4089303 4089303 4089753 4089603 4090203 4089903 4089903 4089603 4089603 4089603 4089603 4089603 4089603 4089603	11 11 11 11 11 11 11 11 11 11 11 11 11
984 GRID 850 GRID 729 GRID 649 GRID	4.11E-07 7.09E-07 2.43E-07 3.65E-07	1.85E-04 1.79E-03 4.32E-04 7.25E-04	4.35E-02 4.32E-02 4.29E-02 4.28E-02 Page 4	250909 250459 250009 249709	4090353 4089153 4089903 4089903	11 11 11 11

7.67		1 10- 06		D_PMI.txt	250450	4000150	
767	GRID	1.10E-06	3.29E-03	4.26E-02	250159	4089153	11
607	GRID	2.28E-06	7.29E-03	4.25E-02	249559	4089453	11
509	GRID	4.38E-07	9.77E-04	4.21E-02	249259	4087353	11
445	GRID	5.02E-07	1.06E-03	4.17E-02	248959	4089603	11
689	GRID	2.91E-07	5.42E-04	4.16E-02	249859	4089903	11
527	GRID	2.90E-07	5.81E-04	4.12E-02	249259	4090203	11
565	GRID	1.33E-06	3.94E-03	4.09E-02	249409	4089453	11
769	GRID	2.04E-07	3.53E-04	4.08E-02	250159	4089903	11
368	GRID	3.69E-07	4.48E-04 6.77E-03	4.07E-02	248659 249709	4090053	11 11
648 811	GRID	2.07E-06 2.11E-07	3.53E-04	4.06E-02 4.04E-02	250309	4089303 4089753	11
611	GRID GRID	3.09E-07	6.74E-04	4.00E-02	249559	4090053	11
570	GRID	2.50E-07	5.37E-04	3.96E-02	249339	4090203	$\frac{11}{11}$
894	GRID	4.53E-07	1.04E-03	3.95E-02	250609	4089303	$\frac{1}{1}$
1023	GRID	1.97E-07	1.66E-04	3.95E-02	251059	4089753	11
551	GRID	7.13E-07	1.03E-03	3.89E-02	249409	4087353	11
807	GRID	8.91E-07	2.44E-03	3.84E-02	250309	4089153	11
449	GRID	2.37E-07	4.17E-04	3.73E-02	248959	4090353	11
650	GRID	2.44E-07	4.88E-04	3.71E-02	249709	4090053	$\overline{1}\overline{1}$
853	GRID	2.23E-07	4.12E-04	3.71E-02	250459	4089603	11
489	GRID	2.26E-07	4.37E-04	3.70E-02	249109	4090353	$\overline{1}\overline{1}$
895	GRID	2.73E-07	5.89E-04	3.69E-02	250609	4089453	$\overline{11}$
812	GRID	1.60E-07	2.36E-04	3.68E-02	250309	4089903	$\overline{11}$
369	GRID	2.82E-07	3.92E-04	3.67E-02	248659	4090203	$\overline{1}\overline{1}$
727	GRID	1.26E-06	4.03E-03	3.67E-02	250009	4089153	$\overline{1}\overline{1}$
548	GRID	8.59E-07	4.22E-03	3.66E-02	249409	4086903	11
852	GRID	3.46E-07	7.13E-04	3.65E-02	250459	4089453	11
590	GRID	5.91E-07	1.94E-03	3.64E-02	249559	4086903	11
591	GRID	9.01E-07	1.03E-03	3.63E-02	249559	4087053	11
410	GRID	2.36E-07	3.72E-04	3.63E-02	248809	4090353	11
893	GRID	5.28E-07	1.30E-03	3.63E-02	250609	4089153	11
612	GRID	2.23E-07	4.61E-04	3.63E-02	249559	4090203	11
366	GRID	3.61E-07	5.63E-04	3.58E-02	248659	4089753	11
854	GRID	1.83E-07	3.02E-04	3.57E-02	250459	4089753	11
405	GRID	3.85E-07	8.43E-04	3.54E-02	248809	4089603	11
690	GRID	2.06E-07	3.75E-04	3.48E-02	249859	4090053	11
766	GRID	7.34E-07	2.20E-03	3.48E-02	250159	4089003	11
483	GRID	6.25E-07	1.68E-03	3.47E-02	249109	4089453	11
1063	GRID	3.83E-07	1.50E-04 3.99E-04	3.45E-02 3.44E-02	251209 249409	4089903	11
571 687	GRID	1.89E-07 1.17E-06	3.71E-03	3.44E-02 3.44E-02	249409	4090353 4089153	11 11
691	GRID GRID	1.61E-07	2.67E-04	3.44E-02 3.43E-02	249859	4090203	11
730	GRID	1.85E-07	3.22E-04	3.42E-02	250009	4090053	11
327	GRID	3.25E-07	4.16E-04	3.41E-02	248509	4089903	11
528	GRID	2.04E-07	4.26E-04	3.40E-02	249259	4090353	11
985	GRID	1.40E-07	7.83E-05	3.40E-02	250909	4090503	11
523	GRID	8.14E-07	2.24E-03	3.38E-02	249259	4089453	11
634	GRID	6.14E-07	8.43E-04	3.34E-02	249709	4087203	11
651	GRID	1.84E-07	3.44E-04	3.34E-02	249709	4090203	11
937	GRID	3.36E-07	7.67E-04	3.34E-02	250759	4089303	$\overline{1}\overline{1}$
938	GRID	2.21E-07	4.66E-04	3.34E-02	250759	4089453	$\overline{1}\overline{1}$
892	GRID	5.10E-07	1.36E-03	3.32E-02	250609	4089003	11
855	GRID	1.63E-07	2.19E-04	3.32E-02	250459	4089903	11
981	GRID	1.96E-07	3.70E-04	3.31E-02	250909	4089453	11
606	GRID	9.94E-07	2.98E-03	3.28E-02	249559	4089303	11
468	GRID	4.51E-07	1.44E-03	3.27E-02	249109	4087203	11
633	GRID	8.72E-07	9.26E-04	3.27E-02	249709	4087053	11
898	GRID	1.59E-07	1.93E-04	3.26E-02	250609	4089903	11
444	GRID	4.77E-07	1.26E-03	3.26E-02	248959	4089453	11
980	GRID	2.75E-07	6.05E-04	3.26E-02	250909	4089303	11
770	GRID	1.70E-07	2.64E-04	3.23E-02	250159	4090053	11
1062	GRID	2.07E-07	1.42E-04	3.23E-02	251209	4089753	11

Rep_PMI.txt
FILE: C:\Documents and Settings\vleo\Desktop\Vleo\Gateway 02\Rep_PMI.txt

EXCEPTION REPORT (there have been no changes or exceptions)

RECEP	TORS WITH	HIGHEST CANCE	ER RISK				
REC	TYPE	CANCER	CHRONIC	ACUTE	UTME	UTMN	ZONE
592	GRID	5.20E-06	2.66E-03	5.47E-02	249559	4087203	11
688	GRID	3.95E-06	1.34E-02	4.53E-02	249859	4089303	11
550	GRID	3.03E-06	1.60E-03	6.49E-02	249409	4087203	11
607	GRID	2.31E-06	7.37E-03	4.05E-02	249559	4089453	11
648	GRID	2.23E-06	7.32E-03	3.89E-02	249709	4089303	11
728	GRID	2.06E-06	6.46E-03	5.03E-02	250009	4089303	11
486	GRID	1.58E-06	8.19E-04	8.61E-02	249109	4089903	11
768	GRID	1.57E-06	3.57E-03	9.13E-02	250159	4089303	11
608	GRID	1.39E-06	3.69E-03	4.43E-02	249559	4089603	11
525	GRID	1.37E-06	1.32E-03	7.50E-02	249259	4089753	11
565	GRID	1.36E-06	4.07E-03	4.05E-02	249409	4089453	11
727	GRID	1.33E-06	4.23E-03	3.90E-02	250009	4089153	11
567	GRID	1.21E-06	1.63E-03	5.80E-02	249409	4089753	11
687	GRID	1.15E-06	3.65E-03	3.42E-02	249859	4089153	11
767	GRID	1.10E-06	3.27E-03	4.42E-02	250159	4089153	11
566	GRID	1.06E-06	2.42E-03	4.34E-02	249409	4089603	11
808	GRID	1.05E-06	2.08E-03	5.35E-02	250309	4089303	11
606	GRID	1.02E-06	3.09E-03	3.29E-02	249559	4089303	11
407	GRID	9.70E-07	5.61E-04	6.65E-02	248809	4089903	11
485	GRID	9.52E-07	1.03E-03	7.50E-02	249109	4089753	11
647	GRID	9.40E-07	2.93E-03	3.21E-02	249709	4089153	11
609	GRID	9.23E-07	1.76E-03	5.29E-02	249559	4089753	11
548	GRID	9.20E-07	4.41E-03	3.70E-02	249409	4086903	11
591	GRID	9.14E-07	1.14E-03	3.83E-02	249559	4087053	11
807	GRID	8.81E-07	2.41E-03	3.96E-02	250309	4089153	11
633	GRID	8.79E-07	1.02E-03	3.41E-02	249709	4087053	11
1064	GRID	8.67E-07	3.91E-04	2.96E-02	251209	4090053	11
549	GRID	8.48E-07	1.39E-03	5.88E-02	249409	4087053	11
524	GRID	8.44E-07	1.76E-03	4.64E-02	249259	4089603	11
523	GRID	8.38E-07	2.31E-03	3.23E-02	249259	4089453	11
446	GRID	7.85E-07	8.36E-04	6.56E-02	248959	4089753	11
564	GRID	7.84E-07	2.32E-03	2.83E-02	249409	4089303	11
766	GRID	7.73E-07	2.32E-03	3.64E-02	250159	4089003	11
806	GRID	7.20E-07	2.15E-03	3.26E-02	250309	4089003	11
508	GRID	7.14E-07	1.02E-03	5.66E-02	249259	4087203	11
850	GRID	7.11E-07	1.80E-03	4.36E-02	250459	4089153	11
851	GRID	6.82E-07	1.50E-03	4.65E-02	250459	4089303	11
484	GRID	6.80E-07	1.44E-03	4.41E-02	249109	4089603	11
568	GRID	6.66E-07	1.04E-03	5.56E-02	249409	4089903	11
943	GRID	6.58E-07	2.95E-04	3.10E-02	250759	4090203	11
634	GRID	6.58E-07	8.77E-04	3.46E-02	249709	4087203	11
726	GRID	6.55E-07	1.97E-03	2.93E-02	250009	4089003	11
483	GRID	6.47E-07	1.73E-03	3.48E-02	249109	4089453	11
275	GRID	6.33E-07	1.96E-02	2.21E-02	248359	4088253	11
547	GRID	6.32E-07	4.01E-03	2.56E-02	249409	4086753	11
551	GRID	6.13E-07	1.03E-03	3.86E-02	249409	4087353	11
590	GRID	6.06E-07	2.05E-03	3.74E-02	249559	4086903	11
849	GRID	5.97E-07	1.68E-03	2.88E-02	250459	4089003	11
355	GRID	5.94E-07	1.80E-02	2.01E-02	248659	4088103	11
809	GRID	5.81E-07	1.10E-03	5.51E-02	250309	4089453	11
522	GRID	5.73E-07	1.60E-03	2.57E-02	249259	4089303	11
487	GRID	5.51E-07	6.34E-04	6.38E-02	249109	4090053	11
686	GRID	5.38E-07	1.60E-03	2.88E-02	249859	4089003	11
893	GRID	5.37E-07	1.35E-03	3.72E-02	250609	4089153	11
445	GRID	5.34E-07	1.15E-03	4.29E-02	248959	4089603	11
				Page 1			

274 646 605 894 405 406 407 407 407 407 407 407 407 407 407 407	GRID GRID GRID GRID GRID GRID GRID GRID	5.19E-07 5.15E-07 5.00E-07 4.99E-07 4.99E-07 4.93E-07 4.88E-07 4.88E-07 4.82E-07 4.74E-07 4.67E-07 4.66E-07 4.66E-07 4.66E-07 4.17E-07 4.12E-07 4.12E-07 4.12E-07 4.12E-07 4.12E-07 4.13E-07 3.96E-07	1.57E-02 1.57E-03 1.41E-03 1.32E-03 1.45E-03 1.45E-04 1.35E-04 1.35E-04 1.35E-03 8.06E-04 1.35E-03 8.58E-04 1.35E-03 1.05E-03 1.05E-03 1.05E-03 1.05E-03 1.18E-03 1.18E-03 1.18E-03 1.18E-04 1.11E-03 1.11E-03 1.11E-04 1.11E-03 1.11E-04 1.11E-03 1.11E-04 1.11E-03 1.11E-04 1.11E-03 1.11E-04 1.11E-03 1.11E-04 1.11E-03 1.11E-04 1.11E-04 1.11E-03 1.11E-04	P_PMI.txt 2.10E-02 2.29E-02 2.48E-02 3.45E-02 3.38E-02 2.55E-02 4.87E-02 3.13E-02 5.52E-02 4.55E-02 2.72E-02 2.79E-02 2.34E-02 2.34E-02 2.34E-02 2.34E-02 2.34E-02 2.35E-02 3.13E-02 3.13E-02 2.34E-02 2.35E-02 2.34E-02 2.35E-02 2.36E-02 3.71E-02	248359 249709 249559 250609 248859 248809 2488659 250609 249859 250459 249859 249559 249559 249109 249859 250759 249259 249259 249259 249259 249259 249259 249259 249259 249259 250759 251359 250009 248809 250759 251359 250609 250759 250459 250759 250459 250759 250459 2	4088103 408903 4089153 4089633 4089753 4089903 4089903 4089903 4089903 4089903 4089903 4089903 4089903 4089153 4089153 4089603 4089153 408963 4089153 408963 4089153 408963 4089153 408963 4089153 408963 4089153 408963 4089153 408963 4089153 408963 4089153 408963	11 11 11 11 11 11 11 11 11 11 11 11 11
REC 275 355 274 688 607 648 354 728 395 394 356 316 232 548	TYPE GRID GRID GRID GRID GRID GRID GRID GRID	GHEST CHRON CANCER 6.33E-07 5.94E-07 5.19E-07 3.95E-06 2.31E-06 2.23E-06 2.81E-07 2.06E-06 2.48E-07 2.48E-07 2.38E-07 2.28E-07	CHRONIC 1.96E-02 1.80E-02 1.57E-02 1.34E-02 7.37E-03 6.91E-03 6.46E-03 5.71E-03 5.60E-03 5.44E-03 5.18E-03 4.41E-03	ACUTE 2.21E-02 2.01E-02 2.10E-02 4.53E-02 4.05E-02 3.89E-02 1.87E-02 5.03E-02 2.08E-02 1.97E-02 2.12E-02 1.60E-02 3.70E-02	UTME 248359 248659 249859 249559 249709 248659 250009 248809 248809 248809 248809	UTMN 4088253 4088103 4089303 4089453 4089303 4087953 4088103 4087953 4088253 4088253 4086903	ZONE 11 11 11 11 11 11 11 11 11 11 11 11 11
231	GRID	1.93E-07	4.30E-03	1.65E-02 Page 2	248209	4088103	11

727	CDTD	1.33E-06	Re 4.23E-03	p_PMI.txt 3.90E-02	250009	4089153	11
727 565	GRID GRID	1.36E-06	4.07E-03	4.05E-02	249409	4089453	11
547	GRID	6.32E-07	4.01E-03	2.56E-02	249409	4086753	11
608	GRID	1.39E-06	3.69E-03	4.43E-02	249559	4089603	11
687 768	GRID GRID	1.15E-06 1.57E-06	3.65E-03 3.57E-03	3.42E-02 9.13E-02	249859 250159	4089153 4089303	11 11
276	GRID	1.75E-07	3.36E-03	1.72E-02	248359	4088403	11
434	GRID	1.86E-07	3.34E-03	2.30E-02	248959	4087953	11
767	GRID	1.10E-06	3.27E-03	4.42E-02	250159	4089153	11
606 647	GRID GRID	1.02E-06 9.40E-07	3.09E-03 2.93E-03	3.29E-02 3.21E-02	249559 249709	4089303 4089153	11 11
393	GRID	1.78E-07	2.89E-03	2.12E-02	248809	4087803	11
189	GRID	1.50E-07	2.79E-03	1.63E-02	248059	4088253	11
433	GRID	1.77E-07	2.73E-03	2.27E-02	248959	4087803	11
435 592	GRID GRID	1.64E-07 5.20E-06	2.68E-03 2.66E-03	2.16E-02 5.47E-02	248959 249559	4088103 4087203	11 11
233	GRID	1.51E-07	2.57E-03	1.67E-02	248209	4088403	11
566	GRID	1.06E-06	2.42E-03	4.34E-02	249409	4089603	11
807 188	GRID	8.81E-07 1.36E-07	2.41E-03 2.39E-03	3.96E-02 1.59E-02	250309 248059	4089153 4088103	11 11
273	GRID GRID	1.43E-07	2.37E-03	1.77E-02	248359	4087953	11
564	GRID	7.84E-07	2.32E-03	2.83E-02	249409	4089303	11
766	GRID	7.73E-07	2.32E-03	3.64E-02	250159	4089003	11
523 507	GRID GRID	8.38E-07 3.37E-07	2.31E-03 2.25E-03	3.23E-02 2.85E-02	249259 249259	4089453 4086603	11 11
546	GRID	3.63E-07	2.24E-03	2.14E-02	249409	4086603	11
353	GRID	1.54E-07	2.21E-03	1.86E-02	248659	4087803	11
806 808	GRID GRID	7.20E-07 1.05E-06	2.15E-03 2.08E-03	3.26E-02 5.35E-02	250309 250309	4089003 4089303	11 11
473	GRID	1.45E-07	2.06E-03	2.15E-02	249109	4087953	11
590	GRID	6.06E-07	2.05E-03	3.74E-02	249559	4086903	11
309	GRID	2.83E-07	2.04E-03 2.03E-03	2.22E-02 1.87E-02	248509	4086903	11 11
315 310	GRID GRID	1.43E-07 2.88E-07	2.03E-03 2.01E-03	2.06E-02	248509 248509	4087803 4087053	11
589	GRID	3.42E-07	2.00E-03	2.00E-02	249559	4086603	11
472	GRID	1.56E-07	1.99E-03	2.20E-02	249109	4087803	11
726 467	GRID GRID	6.55E-07 2.83E-07	1.97E-03 1.93E-03	2.93E-02 2.63E-02	250009 249109	4089003 4086603	11 11
146	GRID	1.20E-07	1.82E-03	1.45E-02	247909	4088253	11
850	GRID	7.11E-07	1.80E-03	4.36E-02	250459	4089153	11
524 609	GRID GRID	8.44E-07 9.23E-07	1.76E-03 1.76E-03	4.64E-02 5.29E-02	249259 249559	4089603 4089753	11 11
396	GRID	1.36E-07	1.73E-03	2.00E-02	248809	4088253	11
483	GRID	6.47E-07	1.73E-03	3.48E-02	249109	4089453	11
432	GRID	1.66E-07	1.72E-03	2.25E-02	248959	4087653	11
317 471	GRID GRID	1.31E-07 1.75E-07	1.70E-03 1.69E-03	2.00E-02 2.43E-02	248509 249109	4088403 4087653	11 11
849	GRID	5.97E-07	1.68E-03	2.88E-02	250459	4089003	11
190	GRID	1.23E-07	1.68E-03	1.39E-02	248059	4088403	11
567 522	GRID GRID	1.21E-06 5.73E-07	1.63E-03 1.60E-03	5.80E-02 2.57E-02	249409 249259	4089753 4089303	11 11
550	GRID	3.03E-06	1.60E-03	6.49E-02	249409	4087203	11
686	GRID	5.38E-07	1.60E-03	2.88E-02	249859	4089003	11
631 230	GRID	2.96E-07 1.16E-07	1.60E-03 1.59E-03	1.97E-02 1.42E-02	249709 248209	4086603 4087953	11 11
145	GRID GRID	1.10E-07 1.10E-07	1.58E-03	1.50E-02	247909	4087933	11
646	GRID	5.15E-07	1.55E-03	2.29E-02	249709	4089003	11
389	GRID	3.04E-07	1.55E-03	2.66E-02	248809	4087203	11
474 349	GRID GRID	1.29E-07 2.69E-07	1.54E-03 1.54E-03	2.20E-02 2.43E-02	249109 248659	4088103 4087203	11 11
851	GRID	6.82E-07	1.50E-03	4.65E-02	250459	4089303	11
392	GRID	1.53E-07	1.49E-03	2.26E-02	248809	4087653	11
428	GRID	2.19E-07	1.45E-03	2.58E-02 Page 3	248959	4086603	11
				, age J			

			_				
429 805 484 267 605 311 512 513 549 314 266 511 588 893 848 765 632 234 525 545 892	GRID GRID GRID GRID GRID GRID GRID GRID	3.41E-07 4.93E-07 6.80E-07 2.08E-07 5.00E-07 2.21E-07 1.37E-07 1.25E-07 1.35E-07 1.95E-07 1.66E-07 4.66E-07 4.69E-07 4.84E-07 1.24E-07 1.37E-06 2.30E-07 4.99E-07	1.45E-03 1.45E-03 1.44E-03 1.44E-03 1.41E-03 1.41E-03 1.41E-03 1.39E-03 1.36E-03 1.35E-03 1.35E-03 1.35E-03 1.35E-03 1.35E-03 1.35E-03 1.35E-03 1.35E-03 1.35E-03 1.35E-03	p_PMI.txt 2.99E-02 2.55E-02 4.41E-02 1.86E-02 2.48E-02 2.21E-02 2.26E-02 1.95E-02 5.88E-02 1.88E-02 2.07E-02 2.58E-02 1.72E-02 3.72E-02 2.34E-02 2.79E-02 3.13E-02 1.55E-02 7.50E-02 1.89E-02 3.45E-02 1.25E-02	248959 250309 249109 248359 249559 248509 249259 249259 248359 249259 250609 250459 250159 249259 249259 249259 249259 249259 249259 249259 249259 249259 249259	4087203 4088853 4089603 4087053 4087203 4087803 4087953 4087653 4086453 4088453 4088853 4088853 4088853 4088853 4088853 4088853 4088853 4088853 4088853 4088853 4088853 4088853	11 11 11 11 11 11 11 11 11 11 11 11 11
RECEPT	FORS WITH H	IGHEST ACUTE	HI				
REC 768 486 525 487 446 550 487 567 447 508 809 528 408 809 528 408 851 408 851 408 851 408 851 408 851 408 851 408 851 408 851 851 851 851 851 851 851 851 851 85	TYPE GRID GRID GRID GRID GRID GRID GRID GRID	CANCER 1.57E-06 1.58E-06 1.37E-06 9.52E-07 9.70E-07 7.85E-07 3.03E-06 5.51E-07 8.48E-07 1.21E-06 4.67E-07 4.83E-07 5.81E-07 5.20E-06 1.05E-06 9.23E-07 4.17E-07 2.06E-06 4.88E-07 2.88E-07 6.82E-07 3.95E-06 3.95E-07 4.17E-07 1.39E-06 1.00E-06 6.80E-07	CHRONIC 3.57E-03 8.19E-04 1.32E-03 1.03E-04 8.36E-04 1.60E-03 6.34E-04 1.39E-03 1.63E-03 1.04E-03 4.82E-04 1.10E-03 2.66E-03 2.08E-03 1.76E-03 6.90E-04 6.46E-03 6.98E-04 4.91E-04 1.50E-04 1.50E-04 1.50E-04 1.50E-04 1.48E-04 4.50E-04 1.48E-04 3.69E-03 3.27E-03 1.44E-03	ACUTE 9.13E-02 8.61E-02 7.50E-02 6.65E-02 6.65E-02 6.49E-02 6.38E-02 5.88E-02 5.88E-02 5.71E-02 5.56E-02 5.56E-02 5.51E-02 5.51E-02 5.15E-02 5.15E-02 4.87E-02 4.65E-02 4.65E-02 4.65E-02 4.65E-02 4.65E-02 4.48E-02 4.48E-02 4.44E-02 4.41E-02	UTME 250159 249109 249259 249109 248809 248959 249409 249409 249809 249809 249559 250009 248809 249109 249859 249259 249859 249859 249859 249859 249859 249859 249859 249109	UTMN 4089303 4089903 4089753 4089753 4089753 4089753 4089753 4089753 4089753 4089753 4089903 4089453 4089753	ZONE 11 11 11 11 11 11 11 11 11 11 11 11 11
409 850 566 445 811	GRID GRID GRID GRID GRID	2.90E-07 7.11E-07 1.06E-06 5.34E-07 2.18E-07	4.03E-04 1.80E-03 2.42E-03 1.15E-03 3.84E-04	4.41E-02 4.36E-02 4.34E-02 4.29E-02 4.26E-02	248809 250459 249409 248959 250309	4090203 4089153 4089603 4089603 4089753	11 11 11 11 11

			Rep	o_PMI.txt			
810	GRID	3.11E-07	6.00E-04	4.17E-02	250309	4089603	11
509	GRID	4.13E-07	9.81E-04	4.16E-02	249259	4087353	11
368	GRID	3.56E-07	4.11E-04	4.13E-02	248659	4090053	11
729	GRID	2.17E-07	3.50E-04	4.12E-02	250009	4089903	11
649	GRID	3.47E-07	6.54E-04	4.10E-02	249709	4089903	11
689	GRID	2.54E-07	4.17E-04	4.07E-02	249859	4089903	11
607	GRID	2.31E-06	7.37E-03	4.05E-02	249559	4089453	11
565	GRID	1.36E-06	4.07E-03	4.05E-02	249409	4089453	11
1023	GRID	2.08E-07	1.87E-04	4.01E-02	251059	4089753	11
489	GRID	1.95E-07	3.74E-04	3.97E-02	249109	4090353	11
807	GRID	8.81E-07	2.41E-03	3.96E-02	250309	4089153	11
727	GRID	1.33E-06	4.23E-03	3.90E-02	250009	4089153	11
648	GRID	2.23E-06	7.32E-03	3.89E-02	249709	4089303	11
570	GRID	2.07E-07	4.13E-04	3.88E-02	249409	4090203	11
551	GRID	6.13E-07	1.03E-03	3.86E-02	249409	4087353	11
894	GRID	4.75E-07	1.10E-03	3.86E-02	250609	4089303	11
527	GRID	2.51E-07	4.94E-04	3.85E-02	249259	4090203	11
611	GRID	2.76E-07	5.38E~04	3.84E-02	249559	4090053	11
591	GRID	9.14E-07	1.14E-03	3.83E-02	249559	4087053	11
853	GRID	2.43E-07	4.57E-04	3.80E-02	250459	4089603	11
895	GRID	2.91E-07	6.28E-04	3.78E-02	250609	4089453	11
852	GRID	3.66E-07	7.55E-04	3.74E-02	250459	4089453	11
590	GRID	6.06E-07	2.05E-03	3.74E-02	249559	4086903	11
366	GRID	3.78E-07	6.12E-04	3.73E-02	248659	4089753	11
769	GRID	1.85E-07	2.84E-04	3.72E-02	250159	4089903	11
893	GRID	5.37E-07	1.35E-03	3.72E-02	250609	4089153	11
405	GRID	4.12E-07	9.02E-04	3.71E-02	248809	4089603	11
548	GRID	9.20E-07	4.41E-03	3.70E-02	249409	4086903	11
812	GRID	1.54E-07	2.15E-04	3.65E-02	250309	4089903	11
766	GRID	7.73E-07	2.32E-03	3.64E-02	250159	4089003	11
650	GRID	2.34E-07	4.40E-04	3.60E-02	249709	4090053	11
449	GRID	2.06E-07	3.63E-04	3.56E-02	248959	4090353	11
369	GRID	2.58E-07	3.58E-04	3.55E-02	248659	4090203	11
410	GRID	2.12E-07	3.39E-04	3.54E-02	248809	4090353	11
483	GRID	6.47E-07	1.73E-03	3.48E-02	249109 249709	4089453 4087203	11 11
634 892	GRID	6.58E-07	8.77E-04 1.32E-03	3.46E-02 3.45E-02	250609	4087203	11
983	GRID GRID	4.99E-07 1.99E-07	2.18E-04	3.43E-02 3.43E-02	250909	4089753	11
687	GRID	1.15E-06	3.65E-03	3.43E-02 3.42E-02	249859	4089153	11
633	GRID	8.79E-07	1.02E-03	3.42E-02 3.41E-02	249709	4087053	11
1063	GRID	4.06E-07	1.68E-04	3.40E-02	251209	4089903	11
855	GRID	1.67E-07	2.29E-04	3.39E-02	250459	4089903	11
444	GRID	4.94E-07	1.29E-03	3.38E-02	248959	4089453	11
327	GRID	3.30E-07	4.24E-04	3.38E-02	248509	4089903	$\overline{11}$
730	GRID	1.65E-07	2.49E-04	3.38E-02	250009	4090053	$\overline{11}$
651	GRID	1.74E-07	3.10E-04	3.38E-02	249.709	4090203	$\overline{1}\overline{1}$
690	GRID	1.82E-07	2.90E-04	3.36E-02	249859	4090053	$\overline{11}$
981	GRID	2.17E-07	3.96E-04	3.35E-02	250909	4089453	$\overline{11}$
691	GRID	1.44E-07	2.07E-04	3.33E-02	249859	4090203	$\overline{11}$
937	GRID	3.55E-07	8.08E-04	3.32E-02	250759	4089303	11
938	GRID	2.41E-07	4.98E-04	3.32E-02	250759	4089453	11
468	GRID	4.33E-07	1.25E-03	3.30E-02	249109	4087203	11
856	GRID	1.58E-07	1.34E-04	3.30E-02	250459	4090053	11
328	GRID	2.74E-07	3.54E-04	3.29E-02	248509	4090053	11
606	GRID	1.02E-06	3.09E-03	3.29E-02	249559	4089303	11
944	GRID	2.89E-07	1.25E-04	3.27E-02	250759	4090353	11
897	GRID	1.73E-07	2.90E-04	3.27E-02	250609	4089753	11
528	GRID	1.73E-07	3.48E-04	3.27E-02	249259	4090353	11
980	GRID	2.93E-07	6.35E-04	3.27E-02	250909	4089303	11
806	GRID	7.20E-07	2.15E-03	3.26E-02	250309	4089003	11
939	GRID	1.76E-07	3.01E-04	3.26E-02	250759	4089603	11
982	GRID	1.80E-07	2.48E-04	3.25E-02	250909	4089603	11

EXCEPTION REPORT (there have been no changes or exceptions)

DECE	OTORC WITH	HIGHEST CANCE	D DICK				
RECEI	TYPE	CANCER	CHRONIC	ACUTE	UTME	UTMN	ZONE
592		5.43E-06	2.79E-03	5.53E-02	249559	4087203	11
688	GRID	3.89E-06	1.32E-02	4.52E-02	249859	4087203	11
	GRID	2.79E-06			249409	4087203	
550	GRID		1.52E-03	6.59E-02	249709		11
648	GRID	2.30E-06	7.62E-03	3.62E-02		4089303	11
607	GRID	2.13E-06	6.80E-03	4.04E-02	249559	4089453	11
728	GRID	2.10E-06	6.61E-03	5.22E-02	250009	4089303	11
768	GRID	1.57E-06	3.56E-03	9.26E-02	250159	4089303	11
486	GRID	1.52E-06	8.76E-04	8.73E-02	249109	4089903	11
608	GRID	1.40E-06	3.75E-03	4.44E-02	249559	4089603	11
525	GRID	1.37E-06	1.37E~03	7.46E-02	249259	4089753	11
727	GRID	1.27E-06	4.05E-03	3.66E-02	250009	4089153	11
567	GRID	1.25E-06	1.73E-03	5.82E-02	249409	4089753	11
565	GRID	1.24E-06	3.67E-03	4.10E-02	249409	4089453	11
767	GRID	1.12E-06	3.35E-03	3.90E-02	250159	4089153	11
687	GRID	1.12E-06	3.54E-03	3.51E-02	249859	4089153	11
808	GRID	1.05E-06	2.07E-03	5.22E-02	250309	4089303	11
566	GRID	1.01E-06	2.32E-03	4.36E-02	249409	4089603	11
606	GRID	9.89E-07	3.00E-03	3.00E-02	249559	4089303	11
609	GRID	9.52E-07	1.87E-03	5.29E-02	249559	4089753	11
485	GRID	9.28E-07	9.71E-04	7.67E-02	249109	4089753	11
548	GRID	9.27E-07	4.54E-03	3.67E-02	249409	4086903	11
647	GRID	9.02E-07	2.83E-03	3.06E-02	249709	4089153	11
807	GRID	8.98E-07	2.49E-03	3.76E-02	250309	4089153	11
633	GRID	8.95E-07	1.04E-03	3.32E-02	249709	4087053	11
407	GRID	8.93E-07	5.22E-04	6.60E-02	248809	4089903	11
591	GRID	8.87E-07	1.13E-03	3.87E-02	249559	4087053	11
1064	GRID	8.83E-07	4.00E-04	3.01E-02	251209	4090053	11
549	GRID	8.76E-07	1.42E-03	5.99E-02	249409	4087053	11
524	GRID	7.66E-07	1.51E-03	4.74E-02	249259	4089603	11
564	GRID	7.65E-07	2.27E-03	2.77E-02	249409	4089303	11
523	GRID	7.64E-07	2.08E-03	3.39E-02	249259	4089453	11
446	GRID	7.33E-07	7.13E-04	6.60E-02	248959	4089753	11
766	GRID	7.32E-07	2.19E-03	3.21E-02	250159	4089003	11
806	GRID	7.28E-07	2.18E-03	3.13E-02	250309	4089003	11
568	GRID	7.17E-07	1.12E-03	5.53E-02	249409	4089903	11
850	GRID	7.15E-07	1.80E-03	4.28E-02	250459	4089153	11
634	GRID	7.12E-07	9.07E-04	3.37E-02	249709	4087203	11
851	GRID	6.88E-07	1.51E-03	4.56E-02	250459 249259	4089303	11
508	GRID	6.67E-07	9.78E-04	4.88E-02 3.69E-02		4087203	11 11
551	GRID	6.64E-07	1.02E-03 1.25E-03	5.53E-02	249409 250309	4087353 4089453	11
809	GRID	6.38E-07					
849	GRID	6.15E-07	1.75E-03	2.86E-02	250459	4089003	11 11
590	GRID	6.14E-07	2.11E-03 3.93E-03	3.68E-02 2.53E-02	249559 249409	4086903 4086753	
547 355	GRID	6.12E-07 6.09E-07	1.84E-02	2.33E-02 2.13E-02	248659	4088103	11 11
726	GRID	6.06E-07	1.82E-03	2.13E-02 2.92E-02	250009	4089003	11
275	GRID	6.02E-07	1.85E-02	1.98E-02	248359	4088253	11
484	GRID	5.89E-07	1.18E-03	4.53E-02	249109	4089603	11
483	GRID GRID	5.89E-07 5.87E-07	1.55E-03	4.55E-02 3.55E-02	249109	4089453	$\frac{11}{11}$
943		5.83E-07	2.57E-04	3.33E-02 3.10E-02	250759	4090203	11
943 487	GRID GRID	5.77E-07	6.92E-04	6.34E-02	230739 249109	4090203	11
522	GRID	5.66E-07	1.59E-03	2.63E-02	249109	4089303	11
686	GRID	5.35E-07	1.61E-03	2.55E-02 2.55E-02	249259	4089003	11
893	GRID	5.35E-07	1.31E-03	3.77E-02	250609	4089153	11
892	GRID	5.19E-07	1.38E-03	3.77E-02 3.52E-02	250609	4089003	11
UJZ	GKID	J. 13E-U/	T.30E-03	3.32E-02 Page 1	230003	TUU 30U 3	11

			Re	p_PMI.txt			
610	GRID	5.06E-07	9.44E-04	4.43E-02	249559	4089903	11
274	GRID	4.91E-07	1.45E-02	2.56E-02	248359	4088103	11
646	GRID	4.90E-07	1.47E-03	2.43E-02	249709	4089003	11
447	GRID	4.88E-07	5.93E-04	5.84E-02	248959	4090053	11
673	GRID	4.87E-07	8.69E-04	2.60E-02	249859	4087053	11
894	GRID	4.87E-07	1.14E-03	3.90E-02	250609	4089303	11
408	GRID	4.80E-07	5.06E-04	5.54E-02	248809	4090053	11
445	GRID	4.72E-07	9.43E-04	4.16E-02	248959	4089603	11
605	GRID	4.71E-07	1.33E-03	2.56E-02 2.31E-02	249559 250459	4089153 4088853	11 11
848	GRID	4.67E-07	1.35E-03 1.38E-03	3.08E-02	249709	4086903	11
632 805	GRID	4.66E-07 4.65E-07	1.36E-03	2.49E-02	250309	4088853	11
482	GRID GRID	4.48E-07	1.22E-03	2.49E-02 2.63E-02	249109	4089303	11
444	GRID	4.47E-07	1.16E-03	3.28E-02	248959	4089453	11
406	GRID	4.43E-07	5.63E-04	4.69E-02	248809	4089753	11
526	GRID	4.40E-07	7.52E-04	5.27E-02	249259	4090053	11
891	GRID	4.35E-07	1.22E-03	2.39E-02	250609	4088853	11
672	GRID	4.32E-07	1.09E-03	2.70E-02	249859	4086903	$\overline{11}$
367	GRID	4.30E-07	4.11E-04	4.49E-02	248659	4089903	11
765	GRID	4.25E-07	1.22E-03	2.55E-02	250159	4088853	11
935	GRID	4.19E-07	1.07E-03	3.06E-02	250759	4089003	11
468	GRID	4.17E-07	1.27E-03	3.27E-02	249109	4087203	11
936	GRID	4.13E-07	1.01E-03	3.36E-02	250759	4089153	11
852	GRID	4.04E-07	8.69E-04	3.68E-02	250459	4089453	11
1065	GRID	4.03E-07	1.80E-04	2.50E-02	251209	4090203	11
509	GRID	4.01E-07	8.97E-04	3.87E-02	249259	4087353	11
563	GRID	3.92E-07	1.08E-03	2.32E-02	249409	4089153	11
1107	GRID	3.88E-07	1.69E-04	2.41E-02	251359	4090053	11
1063	GRID	3.80E-07	1.58E-04	3.39E-02	251209	4089903	11
934	GRID	3.80E-07	1.01E-03	2.70E-02	250759	4088853	11
984	GRID	3.73E-07	1.65E-04	3.84E-02	250909	4090353	11
725	GRID	3.72E-07	1.07E-03	2.40E-02	250009	4088853	11
1106	GRID	3.72E-07	1.52E-04	2.69E-02	251359	4089903	11
937	GRID	3.68E-07	8.55E-04	3.58E-02	250759 248959	4089303 4089303	11 11
443 649	GRID	3.67E-07 3.66E-07	9.95E-04 6.58E-04	2.68E-02 4.07E-02	249709	4089903	11
405	GRID GRID	3.58E-07	7.51E-04	3.64E-02	248809	4089603	11
404	GRID	3.53E-07	8.83E-04	3.11E-02	248809	4089453	11
521	GRID	3.52E-07	9.34E-04	2.52E-02	249259	4089153	11
569	GRID	3.48E-07	7.09E-04	4.70E-02	249409	4090053	11
546	GRID	3.45E-07	2.16E-03	2.14E-02	249409	4086603	$\overline{11}$
890	GRID	3.39E-07	9.54E-04	1.96E-02	250609	4088703	11
978	GRID	3.38E-07	8.30E-04	2.66E-02	250909	4089003	11
366	GRID	3.34E-07	4.84E-04	3.37E-02	248659	4089753	11
368	GRID	3.33E-07	4.05E-04	4.02E-02	248659	4090053	11
DECEDT	ODG WITH UI	CUECT CUDON	TC UT				
		GHEST CHRON	CHRONIC	ACUTE	UTME	UTMN	ZONE
REC 275	TYPE	CANCER 6.02E-07	1.85E-02	1.98E-02	248359	4088253	20NE 11
355	GRID GRID	6.09E-07	1.84E-02	2.13E-02	248659	4088103	11
274	GRID	4.91E-07	1.45E-02	2.56E-02	248359	4088103	11
688	GRID	3.89E-06	1.32E-02	4.52E-02	249859	4089303	11
648	GRID	2.30E-06	7.62E-03	3.62E-02	249709	4089303	11
607	GRID	2.13E-06	6.80E-03	4.04E-02	249559	4089453	$\overline{11}$
728	GRID	2.10E-06	6.61E-03	5.22E-02	250009	4089303	11
354	GRID	2.73E-07	6.52E-03	1.83E-02	248659	4087953	11
356	GRID	2.60E-07	6.06E-03	2.15E-02	248659	4088253	11
395	GRID	2.56E-07	5.96E-03	1.98E-02	248809	4088103	11
394	GRID	2.50E-07	5.69E-03	1.96E-02	248809	4087953	11
316	GRID	2.27E-07	4.98E-03	2.26E-02	248509	4087953	11
548	GRID	9.27E-07	4.54E-03	3.67E-02	249409	4086903	11
232	GRID	1.97E-07	4.46E-03	1.47E-02	248209	4088253	11
727	GRID	1.27E-06	4.05E-03	3.66E-02	250009	4089153	11
				Page 2			

224		1 07- 07		ep_PMI.txt	240200	4000103	
231	GRID	1.87E-07	4.05E-03	1.84E-02	248209	4088103	11
547	GRID	6.12E-07	3.93E-03	2.53E-02	249409	4086753	11
608	GRID	1.40E-06	3.75E-03	4.44E-02	249559	4089603	11
276	GRID	1.81E-07	3.71E-03	1.64E-02	248359	4088403	11
565	GRID	1.24E-06	3.67E-03	4.10E-02	249409	4089453	11
768 687	GRID	1.57E-06	3.56E-03	9.26E-02	250159	4089303	11
687	GRID	1.12E-06 1.87E-07	3.54E-03 3.47E-03	3.51E-02 1.94E-02	249859 248959	4089153 4087953	11 11
434 767	GRID GRID	1.12E-06	3.35E-03	3.90E-02	246939 250159	4087933	11
606	GRID	9.89E-07	3.00E-03	3.90E-02 3.00E-02	249559	4089303	11
647	GRID	9.02E-07	2.83E-03	3.06E-02	249709	4089153	11
592	GRID	5.43E-06	2.79E-03	5.53E-02	249559	4087203	11
435	GRID	1.62E-07	2.75E-03	1.94E-02	248959	4088103	11
433	GRID	1.77E-07	2.74E-03	2.01E-02	248959	4087803	$\overline{1}\overline{1}$
233	GRID	1.49E-07	2.69E-03	1.50E-02	248209	4088403	$\overline{11}$
393	GRID	1.70E-07	2.61E-03	1.82E-02	248809	4087803	11
807	GRID	8.98E-07	2.49E-03	3.76E-02	250309	4089153	11
273	GRID	1.48E-07	2.35E-03	2.31E-02	248359	4087953	11
566	GRID	1.01E-06	2.32E-03	4.36E-02	249409	4089603	11
189	GRID	1.33E-07	2.31E-03	1.32E-02	248059	4088253	11
188	GRID	1.32E-07	2.30E-03	1.48E-02	248059	4088103	11
564	GRID	7.65E-07	2.27E-03	2.77E-02	249409	4089303	11
766	GRID	7.32E-07	2.19E-03	3.21E-02	250159	4089003	11
806	GRID	7.28E-07	2.18E-03	3.13E-02	250309	4089003	11
507	GRID	3.26E-07	2.16E-03	2.84E-02	249259	4086603	11
546	GRID	3.45E-07	2.16E-03	2.14E-02	249409	4086603	11
472 353	GRID	1.61E-07 1.52E-07	2.13E-03 2.12E-03	2.03E-02 1.76E-02	249109 248659	4087803 4087803	11 11
590	GRID GRID	6.14E-07	2.12E-03 2.11E-03	3.68E-02	249559	4086903	11
523	GRID	7.64E-07	2.11E-03 2.08E-03	3.39E-02	249259	4089453	11
808	GRID	1.05E-06	2.07E-03	5.22E-02	250309	4089303	11
473	GRID	1.43E-07	2.06E-03	1.90E-02	249109	4087953	11
396	GRID	1.45E-07	1.98E-03	2.07E-02	248809	4088253	$\bar{1}\bar{1}$
589	GRID	3.32E-07	1.96E-03	1.94E-02	249559	4086603	11
315	GRID	1.43E-07	1.96E-03	1.76E-02	248509	4087803	11
317	GRID	1.36E-07	1.89E-03	1.97E-02	248509	4088403	11
309	GRID	2.63E-07	1.88E-03	2.01E-02	248509	4086903	11
609	GRID	9.52E-07	1.87E-03	5.29E-02	249559	4089753	11
467	GRID	2.66E-07	1.85E-03	2.81E-02	249109	4086603	11
726	GRID	6.06E-07	1.82E-03	2.92E-02	250009	4089003	11
850	GRID	7.15E-07	1.80E-03	4.28E-02	250459	4089153	11
849 310	GRID GRID	6.15E-07 2.50E-07	1.75E-03 1.73E-03	2.86E-02 1.81E-02	250459 248509	4089003 4087053	11 11
567	GRID	1.25E-06	1.73E-03 1.73E-03	5.82E-02	249409	4087033	11
471	GRID	1.78E-07	1.67E-03	2.21E-02	249109	4087653	11
389	GRID	2.95E-07	1.64E-03	2.39E-02	248809	4087203	11
686	GRID	5.35E-07	1.61E-03	2.55E-02	249859	4089003	$\overline{1}\overline{1}$
474	GRID	1.26E-07	1.61E-03	1.93E-02	249109	4088103	11
522	GRID	5.66E-07	1.59E-03	2.63E-02	249259	4089303	11
631	GRID	2.93E-07	1.58E-03	1.90E-02	249709	4086603	11
349	GRID	2.57E-07	1.57E-03	2.15E-02	248659	4087203	11
190	GRID	1.14E-07	1.55E-03	1.29E-02	248059	4088403	11
483	GRID	5.87E-07	1.55E-03	3.55E-02	249109	4089453	11
429	GRID	3.32E-07	1.54E-03	2.77E-02	248959	4087203	11
432 512	GRID	1.63E-07	1.53E-03	2.01E-02	248959	4087653	11
146	GRID	1.40E-07 1.07E-07	1.53E-03 1.52E-03	2.24E-02 1.13E-02	249259 247909	4087803 4088253	11 11
550	GRID GRID	2.79E-06	1.52E-03 1.52E-03	6.59E-02	247909 249409	4088233	11
524	GRID	7.66E-07	1.51E-03	4.74E-02	249409	4087203	11
851	GRID	6.88E-07	1.51E-03	4.56E-02	250459	4089303	11
145	GRID	1.04E-07	1.51E-03	1.25E-02	247909	4088103	11
230	GRID	1.17E-07	1.51E-03	1.73E-02	248209	4087953	11
234	GRID	1.21E-07	1.49E-03	1.46E-02	248209	4088553	11
				Dago 3			

*....

			Re	p_PMI.txt			
646	GRID	4.90E-07	1.47E-03	2.43E-02	249709	4089003	11
511	GRID	1.73E-07	1.45E-03	2.53E-02	249259	4087653	11
549 428	GRID GRID	8.76E-07 2.09E-07	1.42E-03 1.40E-03	5.99E-02 2.38E-02	249409 248959	4087053 4086603	11 11
632	GRID	4.66E-07	1.38E-03	3.08E-02	249709	4086903	11
892	GRID	5.19E-07	1.38E-03	3.52E-02	250609	4089003	11
392	GRID	1.48E-07	1.37E-03	1.94E-02	248809	4087653	11
525	GRID	1.37E-06	1.37E-03	7.46E-02	249259	4089753	11
805	GRID	4.65E-07	1.36E-03	2.49E-02	250309 250459	4088853 4088853	11 11
848 311	GRID GRID	4.67E-07 2.02E-07	1.35E-03 1.34E-03	2.31E-02 2.02E-02	248509	4087203	11
513	GRID	1.20E-07	1.34E-03	1.89E-02	249259	4087953	11
605	GRID	4.71E-07	1.33E-03	2.56E-02	249559	4089153	11
314	GRID	1.31E-07	1.32E-03	1.83E-02	248509	4087653	11
893	GRID	5.35E-07	1.31E-03	3.77E-02	250609	4089153	11
277 588	GRID GRID	1.18E-07 2.23E-07	1.29E-03 1.29E-03	1.58E-02 1.66E-02	248359 249559	4088553 4086453	11 11
468	GRID	4.17E-07	1.27E-03	3.27E-02	249109	4087203	11
809	GRID	6.38E-07	1.25E-03	5.53E-02	250309	4089453	11
191	GRID	1.13E-07	1.25E-03	1.36E-02	248059	4088553	11
545	GRID	2.13E-07	1.25E-03	1.78E-02	249409	4086453	11
352	GRID	1.36E-07	1.25E-03	1.83E-02	248659	4087653	11
RECEPT	ORS WITH	HIGHEST ACUTE	HI				
REC	TYPE	CANCER	CHRONIC	ACUTE	UTME	UTMN	ZONE
768	GRID	1.57E-06	3.56E-03	9.26E-02	250159	4089303	11
486	GRID	1.52E-06	8.76E-04	8.73E-02	249109	4089903	11
485 525	GRID GRID	9.28E-07 1.37E-06	9.71E-04 1.37E-03	7.67E-02 7.46E-02	249109 249259	4089753 4089753	11 11
446	GRID	7.33E-07	7.13E-04	6.60E-02	248959	4089753	11
407	GRID	8.93E-07	5.22E-04	6.60E-02	248809	4089903	11
550	GRID	2.79E-06	1.52E-03	6.59E-02	249409	4087203	11
487	GRID	5.77E-07	6.92E-04	6.34E-02	249109	4090053	11
549 447	GRID	8.76E-07 4.88E-07	1.42E-03 5.93E-04	5.99E-02 5.84E-02	249409 248959	4087053 4090053	11 11
567	GRID GRID	1.25E-06	1.73E-03	5.82E-02	249409	4089753	11
408	GRID	4.80E-07	5.06E-04	5.54E-02	248809	4090053	11
568	GRID	7.17E-07	1.12E-03	5.53E-02	249409	4089903	11
592	GRID	5.43E-06	2.79E-03	5.53E-02	249559	4087203	11
809	GRID	6.38E-07	1.25E-03 1.87E-03	5.53E-02 5.29E-02	250309 249559	4089453 4089753	$\begin{array}{c} 11 \\ 11 \end{array}$
609 526	GRID GRID	9.52E-07 4.40E-07	7.52E-04	5.27E-02	249359	40990053	11
808	GRID	1.05E-06	2.07E-03	5.22E-02	250309	4089303	11
728	GRID	2.10E-06	6.61E-03	5.22E-02	250009	4089303	11
508	GRID	6.67E-07	9.78E-04	4.88E-02	249259	4087203	11
524	GRID	7.66E-07	1.51E-03	4.74E-02	249259	4089603	11
488 569	GRID GRID	3.11E-07 3.48E-07	5.41E-04 7.09E-04	4.71E-02 4.70E-02	249109 249409	4090203 4090053	11 11
406	GRID	4.43E-07	5.63E-04	4.69E-02	248809	4089753	11
851	GRID	6.88E-07	1.51E-03	4.56E-02	250459	4089303	11
810	GRID	3.18E-07	6.17E-04	4.55E-02	250309	4089603	11
484	GRID	5.89E-07	1.18E-03	4.53E-02	249109	4089603	11
688 367	GRID GRID	3.89E-06 4.30E-07	1.32E-02 4.11E-04	4.52E-02 4.49E-02	249859 248659	4089303 4089903	11 11
608	GRID	1.40E-06	3.75E-03	4.49E-02	249559	4089603	11
610	GRID	5.06E-07	9.44E-04	4.43E-02	249559	4089903	11
448	GRID	3.21E-07	4.94E-04	4.38E-02	248959	4090203	11
566	GRID	1.01E-06	2.32E-03	4.36E-02	249409	4089603	11
409 850	GRID GRID	3.10E-07 7.15E-07	4.41E-04 1.80E-03	4.35E-02 4.28E-02	248809 250459	4090203 4089153	11 11
445	GRID	4.72E-07	9.43E-04	4.16E-02	248959	4089603	11
565	GRID	1.24E-06	3.67E-03	4.10E-02	249409	4089453	$\overline{11}$
649	GRID	3.66E-07	6.58E-04	4.07E-02	249709	4089903	11
				Page 4			

			Rep	o_PMI.txt			
811	GRID	2.18E-07	3.74E-04	4.05E-02	250309	4089753	11
607	GRID	2.13E-06	6.80E-03	4.04E-02	249559	4089453	11
368	GRID	3.33E-07	4.05E-04	4.02E-02	248659	4090053	11
1023	GRID	2.14E-07	2.09E-04	3.96E-02	251059	4089753	11
527	GRID	2.66E-07	5.42E-04	3.92E-02	249259	4090203	11
689	GRID	2.76E-07	4.39E-04	3.91E-02	249859	4089903	11
570	GRID	2.26E-07	4.71E-04	3.91E-02	249409	4090203	11
767	GRID	1.12E-06	3.35E-03	3.90E-02	250159	4089153	11
894	GRID	4.87E-07	1.14E-03	3.90E-02	250609	4089303	11
611	GRID	2.94E-07	6.04E-04	3.89E-02	249559	4090053	11
509	GRID	4.01E-07	8.97E-04	3.87E-02	249259	4087353	11
729	GRID	2.44E-07	3.99E-04 1.13E-03	3.87E-02 3.87E-02	250009 249559	4089903 4087053	11 11
591	GRID	8.87E-07	1.13E-03 1.65E-04	3.84E-02	250909	4090353	11
984 853	GRID	3.73E-07 2.56E-07	5.06E-04	3.78E-02	250459	4089603	11
893	GRID GRID	5.35E-07	1.31E-03	3.77E-02	250609	4089153	11
807	GRID	8.98E-07	2.49E-03	3.76E-02	250309	4089153	11
854	GRID	1.93E-07	3.15E-04	3.75E-02	250459	4089753	11
769	GRID	2.11E-07	3.46E-04	3.75E-02	250159	4089903	11
983	GRID	1.96E-07	2.28E-04	3.74E~02	250909	4089753	11
551	GRID	6.64E-07	1.02E-03	3.69E-02	249409	4087353	$\overline{11}$
489	GRID	2.09E-07	4.10E-04	3.69E-02	249109	4090353	$\overline{11}$
812	GRID	1.75E-07	2.61E-04	3.68E-02	250309	4089903	$\overline{11}$
852	GRID	4.04E-07	8.69E-04	3.68E-02	250459	4089453	11
590	GRID	6.14E-07	2.11E-03	3.68E-02	249559	4086903	11
548	GRID	9.27E-07	4.54E-03	3.67E-02	249409	4086903	11
650	GRID	2.36E-07	4.43E-04	3.66E-02	249709	4090053	11
727	GRID	1.27E-06	4.05E-03	3.66E-02	250009	4089153	11
405	GRID	3.58E-07	7.51E-04	3.64E-02	248809	4089603	11
648	GRID	2.30E-06	7.62E-03	3.62E-02	249709	4089303	11
449	GRID	2.20E-07	4.02E-04	3.60E-02	248959	4090353	11
982	GRID	1.91E-07	3.06E-04	3.59E-02	250909	4089603	11
937	GRID	3.68E-07	8.55E-04	3.58E-02	250759	4089303	11
895	GRID	3.25E-07	7.35E-04	3.57E-02	250609	4089453	11
410	GRID	2.28E-07	3.73E-04	3.56E-02	248809	4090353	11 11
369 483	GRID	2.68E-07 5.87E-07	3.85E-04 1.55E-03	3.55E-02 3.55E-02	248659 249109	4090203 4089453	11
612	GRID GRID	2.10E-07	4.23E-04	3.53E-02 3.53E-02	249559	4090203	11
892	GRID	5.19E-07	1.38E-03	3.53E-02 3.52E-02	250609	4089003	11
687	GRID	1.12E-06	3.54E-03	3.51E-02	249859	4089153	11
938	GRID	2.70E-07	5.86E-04	3.40E-02	250759	4089453	11
1063	GRID	3.80E-07	1.58E-04	3.39E-02	251209	4089903	$\overline{11}$
523	GRID	7.64E-07	2.08E-03	3.39E-02	249259	4089453	$\overline{11}$
855	GRID	1.73E-07	2.41E-04	3.38E-02	250459	4089903	11
981	GRID	2.32E-07	4.70E-04	3.38E-02	250909	4089453	11
366	GRID	3.34E-07	4.84E-04	3.37E-02	248659	4089753	11
690	GRID	1.85E-07	2.88E-04	3.37E-02	249859	4090053	11
634	GRID	7.12E-07	9.07E-04	3.37E-02	249709	4087203	11
936	GRID	4.13E-07	1.01E-03	3.36E-02	250759	4089153	11
898	GRID	1.66E-07	2.02E-04	3.36E-02	250609	4089903	11
327	GRID	2.87E-07	3.44E-04	3.35E-02	248509	4089903	11
571	GRID	1.65E-07	3.42E-04	3.34E-02	249409	4090353	11
633	GRID	8.95E-07	1.04E-03	3.32E-02	249709	4087053	11
941 '	GRID	1.73E-07	1.74E-04	3.31E-02	250759 250009	4089903	11 11
730	GRID	1.77E-07 1.72E-07	2.78E-04 3.12E-04	3.29E-02 3.28E-02	230009 249709	4090053 4090203	11
651 593	GRID GRID	1.72E-07 2.33E-07	8.90E-04	3.28E-02 3.28E-02	249709	4087353	11
444	GRID	4.47E-07	1.16E-03	3.28E-02	248959	4089453	11
897	GRID	1.72E-07	2.70E-04	3.28E-02	250609	4089753	11
468	GRID	4.17E-07	1.27E-03	3.27E-02	249109	4087203	11
896	GRID	2.10E-07	4.10E-04	3.27E-02	250609	4089603	11
939	GRID	1.98E-07	3.63E-04	3.21E-02	250759	4089603	$\overline{11}$
				- -			

$\label{lem:rep_PMI.txt} \textbf{Rep_PMI.txt} \\ \textbf{FILE: C:\Documents and Settings} \\ \textbf{Vleo}\\ \textbf{Desktop}\\ \textbf{Vleo}\\ \textbf{Gateway 04}\\ \textbf{Rep_PMI.txt} \\ \\ \textbf{Rep_PMI.txt} \\ \textbf{Settings}\\ \textbf{Vleo}\\ \textbf{Nep_PMI.txt} \\ \textbf{Settings}\\ \textbf{Nep_PMI.txt} \\ \textbf{Nep_PMI.tx$

EXCEPTION REPORT (there have been no changes or exceptions)

		HIGHEST CANCE	:R RISK CHRONIC	ACUTE	LETNAF	UTMN	ZONE
REC 592	TYPE GRID	CANCER 4.85E-06	2.46E-03	ACUTE 5.58E-02	UTME 249559	4087203	20NE 11
688	GRID	3.64E-06	1.24E-02	4.57E-02	249859	4089303	11
550	GRID	2.75E-06	1.47E-03	6.58E-02	249409	4087203	$\overline{11}$
648	GRID	2.22E-06	7.39E-03	3.81E-02	249709	4089303	$\overline{1}\overline{1}$
607	GRID	2.15E-06	6.91E-03	4.03E-02	249559	4089453	$\overline{11}$
728	GRID	1.91E-06	6.01E-03	5.11E-02	250009	4089303	11
486	GRID	1.56E-06	8.42E-04	8.77E-02	249109	4089903	11
768	GRID	1.47E-06	3.32E-03	9.40E-02	250159	4089303	11
608	GRID	1.40E-06	3.85E-03	4.47E-02	249559	4089603	11
525	GRID	1.32E-06	1.35E-03	7.50E-02	249259	4089753	11
565	GRID	1.23E-06 1.20E-06	3.69E-03 1.77E-03	3.96E-02 5.81E-02	249409 249409	4089453 4089753	11 11
567 727	GRID GRID	1.18E-06	3.75E-03	3.98E-02	250009	4089153	11
566	GRID	1.05E-06	2.52E-03	4.33E-02	249409	4089603	11
687	GRID	1.04E-06	3.31E-03	3.73E-02	249859	4089153	$\overline{1}\overline{1}$
767	GRID	1.02E-06	3.04E-03	3.92E-02	250159	4089153	$\overline{1}\overline{1}$
808	GRID	9.71E-07	1.90E-03	5.30E-02	250309	4089303	11
609	GRID	9.32E-07	1.88E-03	5.27E-02	249559	4089753	11
407	GRID	9.19E-07	5.91E-04	6.94E-02	248809	4089903	11
485	GRID	9.11E-07	1.08E-03	7.38E-02	249109	4089753	11
647	GRID	9.11E-07	2.90E-03	3.28E-02	249709	4089153	11
548	GRID	8.61E-07	4.05E-03	3.71E-02 3.10E-02	249409	4086903 4089303	11 11
606 807	GRID GRID	8.42E-07 8.28E-07	2.51E-03 2.28E-03	3.10E-02 3.94E-02	249559 250309	4089303	11
549	GRID	8.22E-07	1.23E-03	6.03E-02	249409	4087053	11
591	GRID	8.17E-07	9.52E-04	3.90E-02	249559	4087053	11
524	GRID	8.12E-07	1.75E-03	4.54E-02	249259	4089603	$\bar{1}\bar{1}$
1064	GRID	8.12E-07	3.69E-04	2.92E-02	251209	4090053	11
633	GRID	8.01E-07	8.64E-04	3.30E-02	249709	4087053	11
523	GRID	7.55E-07	2.07E-03	3.21E-02	249259	4089453	11
446	GRID	7.23E-07	8.56E-04	6.62E-02	248959	4089753	11
551 766	GRID	6.79E-07 6.74E-07	9.31E-04 2.00E-03	3.86E-02 3.26E-02	249409 250159	4087353 4089003	11 11
508	GRID GRID	6.71E-07	9.61E-04	5.56E-02	249259	4087203	11
850	GRID	6.69E-07	1.71E-03	4.34E-02	250459	4089153	11
568	GRID	6.68E-07	1.11E-03	5.41E-02	249409	4089903	$\overline{1}\overline{1}$
806	GRID	6.55E-07	1.95E-03	3.21E-02	250309	4089003	11
564	GRID	6.50E-07	1.89E-03	2.73E-02	249409	4089303	11
484	GRID	6.35E-07	1.35E-03	4.38E-02	249109	4089603	11
851	GRID	6.30E-07	1.36E-03	4.77E-02	250459	4089303	11
275	GRID	6.25E-07	1.94E-02	2.22E-02	248359	4088253	11
943 634	GRID	6.02E-07 5.94E-07	2.69E-04 7.78E-04	3.25E-02 3.21E-02	250759 249709	4090203 4087203	11 11
547	GRID GRID	5.86E-07	3.66E-03	2.60E-02	249409	4087203	11
483	GRID	5.85E-07	1.54E-03	3.55E-02	249109	4089453	11
487	GRID	5.83E-07	7.14E-04	6.37E-02	249109	4090053	11
726	GRID	5.82E-07	1.74E-03	2.73E-02	250009	4089003	11
590	GRID	5.62E-07	1.84E-03	3.76E-02	249559	4086903	11
355	GRID	5.60E-07	1.67E-02	2.17E-02	248659	4088103	11
849	GRID	5.60E-07	1.59E-03	2.87E-02	250459	4089003	11
809	GRID	5.48E-07	1.03E-03	5.60E~02	250309	4089453 4089303	11
522 893	GRID GRID	5.15E-07 5.09E-07	1.42E-03 1.27E-03	2.52E-02 3.74E-02	249259 250609	4089303	11 11
646	GRID	5.01E-07	1.53E-03	2.61E-02	249709	4089003	11
408	GRID	4.95E-07	4.86E-04	5.76E-02	248809	4090053	11
				Page 1	000		
				_			

			D.o.	n DMT +v+			
686 610 447 445 892 367 605 4605 4605 4605 4605 4605 4605 4605	GRID GRID GRID GRID GRID GRID GRID GRID	4.92E-07 4.91E-07 4.90E-07 4.89E-07 4.74E-07 4.74E-07 4.59E-07 4.54E-07 4.52E-07 4.45E-07 4.35E-07 4.35E-07 4.25E-07 4.27E-07 4.21E-07 4.18E-07 4.18E-07 3.97E-07 3.96E-07 3.96E-07 3.58E-07 3.58E-07 3.49E-07	Relation Rel	P_PMI.txt 2.82E-02 4.18E-02 5.84E-02 4.44E-02 2.55E-02 3.25E-02 4.60E-02 2.59E-02 4.82E-02 3.35E-02 3.94E-02 3.94E-02 2.60E-02 2.49E-02 2.55E-02 3.39E-02 2.45E-02 3.39E-02 2.45E-02 3.67E-02 4.61E-02 2.65E-02 3.34E-02 2.65E-02 3.37E-02 4.61E-02 2.65E-02 3.72E-02 3.83E-02 2.65E-02 3.37E-02 4.51E-02 2.16E-02 2.16E-02 2.37E-02 2.16E-02 2.16E-02 2.37E-02 2.16E-02 2.37E-02 2.16E-02 2.37E-02 2.16E-02 2.37E-02 2.16E-02 2.37E-02 2.69E-02	249859 249559 248959 248959 248859 249859 249859 249859 249559 249259 249109 249109 250309 250759 250759 250759 2508609 249859 248859 248859 2488659 2488659 2488659 2488659 2488659 2488659 2488659 2488659 2488659 2488659 250759 250759 250759 250759 250759 250859 249709 250859 249859 249859 249859 25085	408903 408903 4089603 4089603 408903 4089903 4089753 4089753 4089753 4089303 4086903 4087353 4088853 4088853 4088853 4088853 408903	11 11 11 11 11 11 11 11 11 11 11 11 11
RECEPT REC 275		HIGHEST CHRON CANCER 6.25E-07		ACUTE 2.22E-02	UTME 248359	UTMN 4088253	ZONE 11
355 274 688 648 607 354 728 395 394 356 316 232 548	GRID GRID GRID GRID GRID GRID GRID GRID	5.60E-07 4.74E-07 3.64E-06 2.22E-06 2.15E-06 2.59E-07 1.91E-06 2.39E-07 2.41E-07 2.26E-07 2.22E-07 2.05E-07 8.61E-07	1.67E-02 1.41E-02 1.24E-02 7.39E-03 6.91E-03 6.06E-03 5.37E-03 5.24E-03 4.98E-03 4.89E-03 4.88E-03	2.17E-02 2.55E-02 4.57E-02 3.81E-02 4.03E-02 2.04E-02 5.11E-02 2.14E-02 2.16E-02 2.09E-02 2.28E-02 1.67E-02 3.71E-02	248659 248359 249859 249709 249559 248659 250009 248809 248809 248659 248509 248209 249409	4088103 4088103 4089303 4089453 4087953 4088103 4087953 4088253 4088253 4088253 4086903	11 11 11 11 11 11 11 11 11 11
276	GRID	1.83E-07	3.88E-03	1.91E-02 Page 2	248359	4088403	11

			Do	n DMT +v+			
608 727 231 565 547 768 687 434 767 647 233 566 433 189 606 393 592	GRID GRID GRID GRID GRID GRID GRID GRID	1.40E-06 1.18E-06 1.74E-07 1.23E-06 5.86E-07 1.47E-06 1.04E-06 1.85E-07 1.02E-06 9.11E-07 1.47E-07 1.05E-06 1.78E-07 1.34E-07 8.42E-07 1.68E-07 4.85E-06	3.85E-03 3.75E-03 3.73E-03 3.69E-03 3.66E-03 3.31E-03 3.26E-03 2.90E-03 2.83E-03 2.52E-03 2.52E-03 2.52E-03 2.52E-03 2.52E-03 2.52E-03 2.52E-03 2.52E-03	ep_PMI.txt 4.47E-02 3.98E-02 1.90E-02 3.96E-02 2.60E-02 9.40E-02 3.73E-02 2.29E-02 3.92E-02 3.92E-02 1.68E-02 4.33E-02 2.27E-02 1.58E-02 3.10E-02 2.13E-02 5.58E-02	249559 250009 248209 249409 249409 250159 249859 250159 248959 249709 248209 248209 248409 24859 24859 24859 24859	4089603 4089153 4088103 4089453 4086753 4089303 4089153 4089153 4089153 4089153 4088403 4088603 4087803 4087803 4087803 4087803	11 11 11 11 11 11 11 11 11 11 11 11 11
435 273 807 188 523 317 507 766 546 315	GRID GRID GRID GRID GRID GRID GRID GRID	1.55E-07 1.45E-07 8.28E-07 1.26E-07 7.55E-07 1.37E-07 3.11E-07 6.74E-07 3.31E-07	2.45E-03 2.36E-03 2.28E-03 2.19E-03 2.07E-03 2.03E-03 2.01E-03 2.00E-03 1.99E-03	2.24E-02 2.13E-02 3.94E-02 1.72E-02 3.21E-02 2.11E-02 2.85E-02 3.26E-02 2.16E-02 1.91E-02	248959 248359 250309 248059 249259 248509 249259 250159 249409 248509	4088103 4087953 4089153 4088103 4089453 4088403 4086603 4089003 4086603 4087803	11 11 11 11 11 11 11 11 11
473 472 353 806 310 808 564 609 309 590	GRID GRID GRID GRID GRID GRID GRID GRID	1.45E-07 1.61E-07 1.48E-07 6.55E-07 2.71E-07 9.71E-07 6.50E-07 9.32E-07 2.57E-07 5.62E-07	1.97E-03 1.96E-03 1.95E-03 1.92E-03 1.90E-03 1.89E-03 1.88E-03 1.88E-03	2.00E-02 2.17E-02 2.03E-02 3.21E-02 2.05E-02 5.30E-02 2.73E-02 5.27E-02 2.40E-02 3.76E-02	249109 249109 248659 250309 248509 250309 249409 249559 248509 249559	4087953 4087803 4087803 4089003 4087053 4089303 4089753 4086903 4086903	11 11 11 11 11 11 11 11 11
589 567 190 524 726 467 850 389 349 146 849	GRID GRID GRID GRID GRID GRID GRID GRID	3.15E-07 1.20E-06 1.12E-07 8.12E-07 5.82E-07 2.59E-07 6.69E-07 3.08E-07 2.71E-07 1.04E-07	1.81E-03 1.77E-03 1.76E-03 1.75E-03 1.74E-03 1.71E-03 1.66E-03 1.64E-03 1.59E-03	1.95E-02 5.81E-02 1.55E-02 4.54E-02 2.73E-02 2.67E-02 4.34E-02 2.58E-02 2.35E-02 1.47E-02	249559 249409 248059 249259 250009 249109 250459 248659 247909 250459	4086603 4089753 4088403 4089603 4089003 4086603 4087203 4087203 4088253 4089003	11 11 11 11 11 11 11 11 11
483 429 471 646 396 234 145 631 432 550 686	GRID GRID GRID GRID GRID GRID GRID GRID	5.85E-07 3.43E-07 1.84E-07 5.01E-07 1.29E-07 1.12E-07 2.73E-07 2.73E-07	1.54E-03 1.54E-03 1.54E-03 1.53E-03 1.53E-03 1.51E-03 1.48E-03 1.47E-03	3.55E-02 2.84E-02 2.47E-02 2.61E-02 1.61E-02 1.63E-02 1.84E-02 2.14E-02 6.58E-02 2.82E-02	249109 248959 249109 249709 248809 248209 247909 249709 248959 249409 249859	4089453 4087203 4087653 4089003 4088253 4088553 4088603 4087653 4087203	11 11 11 11 11 11 11 11 11
311 522 512 314	GRID GRID GRID GRID	2.17E-07 5.15E-07 1.46E-07 1.39E-07	1.45E-03 1.42E-03 1.40E-03 1.38E-03	2.29E-02 2.52E-02 2.20E-02 2.04E-02 Page 3	248509 249259 249259 248509	4087203 4089303 4087803 4087653	11 11 11 11

474 277 851 525 484 428 511 392 230 513 605 272 468 267 893 892 191 549 805 266 147 848	GRID GRID GRID GRID GRID GRID GRID GRID	1.26E-07 1.12E-07 6.30E-07 1.32E-06 6.35E-07 2.06E-07 1.75E-07 1.52E-07 1.10E-07 1.29E-07 4.52E-07 1.18E-07 4.24E-07 1.90E-07 5.09E-07 4.74E-07 1.01E-07 8.22E-07 4.21E-07 1.78E-07 9.34E-08 4.18E-07	Ref. 1.38E-03 1.37E-03 1.35E-03 1.35E-03 1.35E-03 1.35E-03 1.32E-03 1.30E-03 1.28E-03 1.26E-03 1.26E-03 1.23E-03 1.23E-03 1.23E-03 1.23E-03 1.23E-03 1.21E-03	p_PMI.txt 2.19E-02 1.77E-02 4.77E-02 7.50E-02 4.38E-02 2.57E-02 2.43E-02 1.76E-02 1.91E-02 2.54E-02 1.95E-02 3.34E-02 1.84E-02 3.74E-02 3.74E-02 3.25E-02 1.59E-02 6.03E-02 2.49E-02 2.08E-02 1.59E-02	249109 248359 250459 249259 249109 248959 248209 248209 248209 249259 249259 249109 248359 250609 250609 248059 249409 250309 248359 249409 250309 248359 247909 250459	4088103 4088553 4089753 4089603 4086603 4087653 4087653 4087953 4087953 4087953 4087053 4087053 4089153 408903 4088553 4088853 4088853	11 11 11 11 11 11 11 11 11 11 11 11 11
RECEPTO REC 768 486 525 487 446 550 487 549 447 567 408 809 598 508 609 728 406 851 489 9367 489 9367 489 9368 445 445 445 445 445 445 445 445 445 44	ORS WITH HI TYPE GRID GRID GRID GRID GRID GRID GRID GRID	CANCER 1.47E-06 1.56E-06 1.56E-07 9.11E-07 9.19E-07 7.23E-07 2.75E-06 5.83E-07 4.90E-07 1.20E-06 4.95E-07 5.48E-07 4.85E-07 4.85E-07 4.41E-07 9.71E-07 9.32E-07 1.91E-07 3.19E-07 3.19E-07 3.09E-07 3.64E-06 4.59E-07 3.64E-06 4.89E-07 3.30E-07 1.40E-06 4.89E-07 3.31E-07 6.35E-07 6.35E-07 1.40E-06 4.89E-07 3.58E-07 1.40E-06 4.89E-07 3.73E-07	HI CHRONIC 3.32E-03 8.42E-04 1.35E-03 1.08E-03 5.91E-04 8.56E-04 1.47E-03 7.14E-04 1.23E-03 5.65E-04 1.77E-03 4.86E-04 1.03E-03 2.46E-03 9.61E-04 1.11E-03 7.62E-04 1.90E-03 1.88E-03 6.01E-03 1.88E-03 6.01E-03 1.58E-04 1.72E-04 5.58E-04 1.72E-04 5.00E-04 1.24E-02 1.75E-03 5.12E-04 3.85E-03 1.04E-03 7.03E-04 1.35E-03 1.71E-03 4.24E-04 2.52E-03 1.01E-03 4.95E-04	ACUTE 9.40E-02 8.77E-02 7.50E-02 7.38E-02 6.94E-02 6.62E-02 6.37E-02 6.37E-02 5.84E-02 5.84E-02 5.84E-02 5.56E-02 5.56E-02 5.41E-02 5.30E-02 5.41E-02 5.41E-02 4.62E-02 4.77E-02 4.74E-02 4.62E-02 4.61E-02	UTME 250159 249109 249259 249109 248809 249409 249409 249409 249809 249559 249259 249259 250309 249559 250309 248809 250459 248809 250459 248809 250459 248809 250459 249859	UTMN 4089303 4089903 4089753 4089753 4089753 4089753 4090053 4089753 408963 4089753	ZONE 11 11 11 11 11 11 11 11 11 11 11 11 11

011	CDID	1 02= 07		p_PMI.txt	250200	4000753	11
811 607	GRID GRID	1.93E-07 2.15E-06	3.45E-04 6.91E-03	4.07E-02 4.03E-02	250309 249559	4089753 4089453	11 11
509	GRID	4.27E-07	8.62E-04	3.99E-02	249359	4087353	$\frac{11}{11}$
727	GRID	1.18E-06	3.75E-03	3.98E-02	250009	4089153	11
565	GRID	1.23E-06	3.69E-03	3.96E-02	249409	4089453	11
807	GRID	8.28E-07	2.28E-03	3.94E-02	250309	4089153	$\overline{11}$
894	GRID	4.35E-07	9.84E-04	3.94E-02	250609	4089303	$\bar{1}\bar{1}$
767	GRID	1.02E-06	3.04E-03	3.92E-02	250159	4089153	11
591	GRID	8.17E-07	9.52E-04	3.90E-02	249559	4087053	11
570	GRID	2.32E-07	5.01E-04	3.88E-02	249409	4090203	11
551	GRID	6.79E-07	9.31E-04	3.86E-02	249409	4087353	11
410	GRID	2.36E-07	3.89E-04 6.56E-04	3.86E-02	248809	4090353	11
611 1023	GRID GRID	2.99E-07 1.86E-07	1.54E-04	3.85E-02 3.84E-02	249559 251059	4090053 4089753	11 11
649	GRID	3.44E-07	6.61E-04	3.84E-02 3.83E-02	249709	4089903	11
527	GRID	2.62E-07	5.25E-04	3.82E-02	249259	4090203	11
489	GRID	2.09E-07	4.01E-04	3.82E-02	249109	4090353	$\overline{1}\overline{1}$
729	GRID	2.23E-07	3.79E-04	3.82E-02	250009	4089903	$ar{1}ar{1}$
648	GRID	2.22E-06	7.39E-03	3.81E-02	249709	4089303	11
853	GRID	2.16E-07	3.93E-04	3.79E-02	250459	4089603	11
590	GRID	5.62E-07	1.84E-03	3.76E-02	249559	4086903	11
895	GRID	2.70E-07	5.75E-04	3.76E-02	250609	4089453	11
893 687	GRID	5.09E-07	1.27E-03	3.74E-02	250609	4089153	11
852	GRID GRID	1.04E-06 3.44E-07	3.31E-03 7.04E-04	3.73E-02 3.72E-02	249859 250459	4089153 4089453	11 11
689	GRID	2.70E-07	4.88E-04	3.72E-02 3.72E-02	249859	4089903	11
983	GRID	1.78E-07	1.71E-04	3.72E-02	250909	4089753	11
548	GRID	8.61E-07	4.05E-03	3.71E-02	249409	4086903	$\overline{1}\overline{1}$
405	GRID	3.66E-07	8.08E-04	3.67E-02	248809	4089603	11
366	GRID	3.40E-07	5.72E-04	3.66E-02	248659	4089753	11
449	GRID	2.27E-07	4.22E-04	3.65E-02	248959	4090353	11
650	GRID	2.24E-07	4.38E-04	3.62E-02	249709	4090053	11
369 730	GRID GRID	2.66E-07 1.72E-07	3.61E-04 2.82E-04	3.60E-02 3.56E-02	248659 250009	4090203 4090053	$\begin{array}{c} 11 \\ 11 \end{array}$
483	GRID	5.85E-07	1.54E-03	3.56E-02 3.55E-02	249109	4089453	11
328	GRID	2.73E-07	3.76E-04	3.54E-02	248509	4090053	11
691	GRID	1.45E-07	2.37E-04	3.46E-02	249859	4090203	$\overline{11}$
982	GRID	1.68E-07	2.36E-04	3.46E-02	250909	4089603	$\overline{1}\overline{1}$
690	GRID	1.90E-07	3.36E-04	3.45E-02	249859	4090053	11
769	GRID	1.78E-07	2.91E-04	3.45E-02	250159	4089903	11
327	GRID	3.13E-07	4.28E-04	3.40E-02	248509	4089903	11
936 937	GRID	3.97E-07	9.70E-04	3.39E-02	250759	4089153 4089303	$\begin{array}{c} 11 \\ 11 \end{array}$
957 854	GRID GRID	3.25E-07 1.66E-07	7.20E-04 2.79E-04	3.38E-02 3.37E-02	250759 250459	4089753	$\frac{11}{11}$
444	GRID	4.45E-07	1.15E-03	3.37E-02 3.35E-02	248959	4089453	11
468	GRID	4.24E-07	1.28E-03	3.34E-02	249109	4087203	11
651	GRID	1.66E-07	3.04E-04	3.34E-02	249709	4090203	$\bar{1}\bar{1}$
404	GRID	3.49E-07	8.78E-04	3.33E-02	248809	4089453	11
329	GRID	2.20E-07	3.24E-04	3.32E-02	248509	4090203	11
633	GRID	8.01E-07	8.64E-04	3.30E-02	249709	4087053	11
939	GRID	1.65E-07	2.79E-04	3.29E-02	250759	4089603	11
647 766	GRID GRID	9.11E-07 6.74E-07	2.90E-03 2.00E-03	3.28E-02 3.26E-02	249709 250159	4089153 4089003	$\begin{array}{c} 11 \\ 11 \end{array}$
528	GRID	1.83E-07	3.80E-04	3.26E-02	249259	4090353	11
812	GRID	1.39E-07	2.09E-04	3.26E-02	250309	4089903	11
892	GRID	4.74E-07	1.26E-03	3.25E-02	250609	4089003	11
365	GRID	2.92E-07	6.60E-04	3.25E-02	248659	4089603	11
943	GRID	6.02E-07	2.69E-04	3.25E-02	250759	4090203	11
897	GRID	1.49E-07	2.22E-04	3.24E-02	250609	4089753	11
731	GRID	1.38E-07	2.01E-04	3.24E-02	250009	4090203	11
981	GRID	1.98E-07	3.60E-04	3.23E-02	250909	4089453	11
370	GRID	2.08E-07	3.28E-04	3.23E-02	248659	4090353	11